Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-7+2i\right)\left(7-3i\right)}{\left(7+3i\right)\left(7-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-3i.
\frac{\left(-7+2i\right)\left(7-3i\right)}{7^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-7+2i\right)\left(7-3i\right)}{58}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-7\times 7-7\times \left(-3i\right)+2i\times 7+2\left(-3\right)i^{2}}{58}
Multiply complex numbers -7+2i and 7-3i like you multiply binomials.
\frac{-7\times 7-7\times \left(-3i\right)+2i\times 7+2\left(-3\right)\left(-1\right)}{58}
By definition, i^{2} is -1.
\frac{-49+21i+14i+6}{58}
Do the multiplications in -7\times 7-7\times \left(-3i\right)+2i\times 7+2\left(-3\right)\left(-1\right).
\frac{-49+6+\left(21+14\right)i}{58}
Combine the real and imaginary parts in -49+21i+14i+6.
\frac{-43+35i}{58}
Do the additions in -49+6+\left(21+14\right)i.
-\frac{43}{58}+\frac{35}{58}i
Divide -43+35i by 58 to get -\frac{43}{58}+\frac{35}{58}i.
Re(\frac{\left(-7+2i\right)\left(7-3i\right)}{\left(7+3i\right)\left(7-3i\right)})
Multiply both numerator and denominator of \frac{-7+2i}{7+3i} by the complex conjugate of the denominator, 7-3i.
Re(\frac{\left(-7+2i\right)\left(7-3i\right)}{7^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-7+2i\right)\left(7-3i\right)}{58})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-7\times 7-7\times \left(-3i\right)+2i\times 7+2\left(-3\right)i^{2}}{58})
Multiply complex numbers -7+2i and 7-3i like you multiply binomials.
Re(\frac{-7\times 7-7\times \left(-3i\right)+2i\times 7+2\left(-3\right)\left(-1\right)}{58})
By definition, i^{2} is -1.
Re(\frac{-49+21i+14i+6}{58})
Do the multiplications in -7\times 7-7\times \left(-3i\right)+2i\times 7+2\left(-3\right)\left(-1\right).
Re(\frac{-49+6+\left(21+14\right)i}{58})
Combine the real and imaginary parts in -49+21i+14i+6.
Re(\frac{-43+35i}{58})
Do the additions in -49+6+\left(21+14\right)i.
Re(-\frac{43}{58}+\frac{35}{58}i)
Divide -43+35i by 58 to get -\frac{43}{58}+\frac{35}{58}i.
-\frac{43}{58}
The real part of -\frac{43}{58}+\frac{35}{58}i is -\frac{43}{58}.