Evaluate
\frac{39}{25}=1.56
Factor
\frac{3 \cdot 13}{5 ^ {2}} = 1\frac{14}{25} = 1.56
Share
Copied to clipboard
\frac{\left(-7+\frac{1}{2}\right)\times 6}{\left(-3+8\right)\left(-5\right)}
Divide \frac{-7+\frac{1}{2}}{-3+8} by -\frac{5}{6} by multiplying \frac{-7+\frac{1}{2}}{-3+8} by the reciprocal of -\frac{5}{6}.
\frac{\left(-\frac{14}{2}+\frac{1}{2}\right)\times 6}{\left(-3+8\right)\left(-5\right)}
Convert -7 to fraction -\frac{14}{2}.
\frac{\frac{-14+1}{2}\times 6}{\left(-3+8\right)\left(-5\right)}
Since -\frac{14}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{-\frac{13}{2}\times 6}{\left(-3+8\right)\left(-5\right)}
Add -14 and 1 to get -13.
\frac{\frac{-13\times 6}{2}}{\left(-3+8\right)\left(-5\right)}
Express -\frac{13}{2}\times 6 as a single fraction.
\frac{\frac{-78}{2}}{\left(-3+8\right)\left(-5\right)}
Multiply -13 and 6 to get -78.
\frac{-39}{\left(-3+8\right)\left(-5\right)}
Divide -78 by 2 to get -39.
\frac{-39}{5\left(-5\right)}
Add -3 and 8 to get 5.
\frac{-39}{-25}
Multiply 5 and -5 to get -25.
\frac{39}{25}
Fraction \frac{-39}{-25} can be simplified to \frac{39}{25} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}