Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-66-19i\right)\left(-8+5i\right)}{\left(-8-5i\right)\left(-8+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -8+5i.
\frac{\left(-66-19i\right)\left(-8+5i\right)}{\left(-8\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-66-19i\right)\left(-8+5i\right)}{89}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-66\left(-8\right)-66\times \left(5i\right)-19i\left(-8\right)-19\times 5i^{2}}{89}
Multiply complex numbers -66-19i and -8+5i like you multiply binomials.
\frac{-66\left(-8\right)-66\times \left(5i\right)-19i\left(-8\right)-19\times 5\left(-1\right)}{89}
By definition, i^{2} is -1.
\frac{528-330i+152i+95}{89}
Do the multiplications in -66\left(-8\right)-66\times \left(5i\right)-19i\left(-8\right)-19\times 5\left(-1\right).
\frac{528+95+\left(-330+152\right)i}{89}
Combine the real and imaginary parts in 528-330i+152i+95.
\frac{623-178i}{89}
Do the additions in 528+95+\left(-330+152\right)i.
7-2i
Divide 623-178i by 89 to get 7-2i.
Re(\frac{\left(-66-19i\right)\left(-8+5i\right)}{\left(-8-5i\right)\left(-8+5i\right)})
Multiply both numerator and denominator of \frac{-66-19i}{-8-5i} by the complex conjugate of the denominator, -8+5i.
Re(\frac{\left(-66-19i\right)\left(-8+5i\right)}{\left(-8\right)^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-66-19i\right)\left(-8+5i\right)}{89})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-66\left(-8\right)-66\times \left(5i\right)-19i\left(-8\right)-19\times 5i^{2}}{89})
Multiply complex numbers -66-19i and -8+5i like you multiply binomials.
Re(\frac{-66\left(-8\right)-66\times \left(5i\right)-19i\left(-8\right)-19\times 5\left(-1\right)}{89})
By definition, i^{2} is -1.
Re(\frac{528-330i+152i+95}{89})
Do the multiplications in -66\left(-8\right)-66\times \left(5i\right)-19i\left(-8\right)-19\times 5\left(-1\right).
Re(\frac{528+95+\left(-330+152\right)i}{89})
Combine the real and imaginary parts in 528-330i+152i+95.
Re(\frac{623-178i}{89})
Do the additions in 528+95+\left(-330+152\right)i.
Re(7-2i)
Divide 623-178i by 89 to get 7-2i.
7
The real part of 7-2i is 7.