Solve for x
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Share
Copied to clipboard
2\left(-6x+3\right)=\left(x-4\right)\left(1\times 2+1\right)
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-4\right), the least common multiple of x-4,2.
-12x+6=\left(x-4\right)\left(1\times 2+1\right)
Use the distributive property to multiply 2 by -6x+3.
-12x+6=\left(x-4\right)\left(2+1\right)
Multiply 1 and 2 to get 2.
-12x+6=\left(x-4\right)\times 3
Add 2 and 1 to get 3.
-12x+6=3x-12
Use the distributive property to multiply x-4 by 3.
-12x+6-3x=-12
Subtract 3x from both sides.
-15x+6=-12
Combine -12x and -3x to get -15x.
-15x=-12-6
Subtract 6 from both sides.
-15x=-18
Subtract 6 from -12 to get -18.
x=\frac{-18}{-15}
Divide both sides by -15.
x=\frac{6}{5}
Reduce the fraction \frac{-18}{-15} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}