Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-6-i\right)\left(1-5i\right)}{\left(1+5i\right)\left(1-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-5i.
\frac{\left(-6-i\right)\left(1-5i\right)}{1^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-6-i\right)\left(1-5i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-6-6\times \left(-5i\right)-i-\left(-5i^{2}\right)}{26}
Multiply complex numbers -6-i and 1-5i like you multiply binomials.
\frac{-6-6\times \left(-5i\right)-i-\left(-5\left(-1\right)\right)}{26}
By definition, i^{2} is -1.
\frac{-6+30i-i-5}{26}
Do the multiplications in -6-6\times \left(-5i\right)-i-\left(-5\left(-1\right)\right).
\frac{-6-5+\left(30-1\right)i}{26}
Combine the real and imaginary parts in -6+30i-i-5.
\frac{-11+29i}{26}
Do the additions in -6-5+\left(30-1\right)i.
-\frac{11}{26}+\frac{29}{26}i
Divide -11+29i by 26 to get -\frac{11}{26}+\frac{29}{26}i.
Re(\frac{\left(-6-i\right)\left(1-5i\right)}{\left(1+5i\right)\left(1-5i\right)})
Multiply both numerator and denominator of \frac{-6-i}{1+5i} by the complex conjugate of the denominator, 1-5i.
Re(\frac{\left(-6-i\right)\left(1-5i\right)}{1^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-6-i\right)\left(1-5i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-6-6\times \left(-5i\right)-i-\left(-5i^{2}\right)}{26})
Multiply complex numbers -6-i and 1-5i like you multiply binomials.
Re(\frac{-6-6\times \left(-5i\right)-i-\left(-5\left(-1\right)\right)}{26})
By definition, i^{2} is -1.
Re(\frac{-6+30i-i-5}{26})
Do the multiplications in -6-6\times \left(-5i\right)-i-\left(-5\left(-1\right)\right).
Re(\frac{-6-5+\left(30-1\right)i}{26})
Combine the real and imaginary parts in -6+30i-i-5.
Re(\frac{-11+29i}{26})
Do the additions in -6-5+\left(30-1\right)i.
Re(-\frac{11}{26}+\frac{29}{26}i)
Divide -11+29i by 26 to get -\frac{11}{26}+\frac{29}{26}i.
-\frac{11}{26}
The real part of -\frac{11}{26}+\frac{29}{26}i is -\frac{11}{26}.