Evaluate
-\frac{11}{26}+\frac{29}{26}i\approx -0.423076923+1.115384615i
Real Part
-\frac{11}{26} = -0.4230769230769231
Share
Copied to clipboard
\frac{\left(-6-i\right)\left(1-5i\right)}{\left(1+5i\right)\left(1-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-5i.
\frac{\left(-6-i\right)\left(1-5i\right)}{1^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-6-i\right)\left(1-5i\right)}{26}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-6-6\times \left(-5i\right)-i-\left(-5i^{2}\right)}{26}
Multiply complex numbers -6-i and 1-5i like you multiply binomials.
\frac{-6-6\times \left(-5i\right)-i-\left(-5\left(-1\right)\right)}{26}
By definition, i^{2} is -1.
\frac{-6+30i-i-5}{26}
Do the multiplications in -6-6\times \left(-5i\right)-i-\left(-5\left(-1\right)\right).
\frac{-6-5+\left(30-1\right)i}{26}
Combine the real and imaginary parts in -6+30i-i-5.
\frac{-11+29i}{26}
Do the additions in -6-5+\left(30-1\right)i.
-\frac{11}{26}+\frac{29}{26}i
Divide -11+29i by 26 to get -\frac{11}{26}+\frac{29}{26}i.
Re(\frac{\left(-6-i\right)\left(1-5i\right)}{\left(1+5i\right)\left(1-5i\right)})
Multiply both numerator and denominator of \frac{-6-i}{1+5i} by the complex conjugate of the denominator, 1-5i.
Re(\frac{\left(-6-i\right)\left(1-5i\right)}{1^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-6-i\right)\left(1-5i\right)}{26})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-6-6\times \left(-5i\right)-i-\left(-5i^{2}\right)}{26})
Multiply complex numbers -6-i and 1-5i like you multiply binomials.
Re(\frac{-6-6\times \left(-5i\right)-i-\left(-5\left(-1\right)\right)}{26})
By definition, i^{2} is -1.
Re(\frac{-6+30i-i-5}{26})
Do the multiplications in -6-6\times \left(-5i\right)-i-\left(-5\left(-1\right)\right).
Re(\frac{-6-5+\left(30-1\right)i}{26})
Combine the real and imaginary parts in -6+30i-i-5.
Re(\frac{-11+29i}{26})
Do the additions in -6-5+\left(30-1\right)i.
Re(-\frac{11}{26}+\frac{29}{26}i)
Divide -11+29i by 26 to get -\frac{11}{26}+\frac{29}{26}i.
-\frac{11}{26}
The real part of -\frac{11}{26}+\frac{29}{26}i is -\frac{11}{26}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}