Solve for y
y=-7
Graph
Share
Copied to clipboard
\frac{-9}{-5-\left(-1\right)}=\frac{y-2}{0-4}
Subtract 3 from -6 to get -9.
\frac{-9}{-5+1}=\frac{y-2}{0-4}
The opposite of -1 is 1.
\frac{-9}{-4}=\frac{y-2}{0-4}
Add -5 and 1 to get -4.
\frac{9}{4}=\frac{y-2}{0-4}
Fraction \frac{-9}{-4} can be simplified to \frac{9}{4} by removing the negative sign from both the numerator and the denominator.
\frac{9}{4}=\frac{y-2}{-4}
Subtract 4 from 0 to get -4.
\frac{9}{4}=\frac{-y+2}{4}
Multiply both numerator and denominator by -1.
\frac{9}{4}=-\frac{1}{4}y+\frac{1}{2}
Divide each term of -y+2 by 4 to get -\frac{1}{4}y+\frac{1}{2}.
-\frac{1}{4}y+\frac{1}{2}=\frac{9}{4}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{4}y=\frac{9}{4}-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-\frac{1}{4}y=\frac{9}{4}-\frac{2}{4}
Least common multiple of 4 and 2 is 4. Convert \frac{9}{4} and \frac{1}{2} to fractions with denominator 4.
-\frac{1}{4}y=\frac{9-2}{4}
Since \frac{9}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{4}y=\frac{7}{4}
Subtract 2 from 9 to get 7.
y=\frac{7}{4}\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}.
y=\frac{7\left(-4\right)}{4}
Express \frac{7}{4}\left(-4\right) as a single fraction.
y=\frac{-28}{4}
Multiply 7 and -4 to get -28.
y=-7
Divide -28 by 4 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}