Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-6\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}
Rationalize the denominator of \frac{-6}{2-\sqrt{2}} by multiplying numerator and denominator by 2+\sqrt{2}.
\frac{-6\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-6\left(2+\sqrt{2}\right)}{4-2}
Square 2. Square \sqrt{2}.
\frac{-6\left(2+\sqrt{2}\right)}{2}
Subtract 2 from 4 to get 2.
-3\left(2+\sqrt{2}\right)
Divide -6\left(2+\sqrt{2}\right) by 2 to get -3\left(2+\sqrt{2}\right).
-6-3\sqrt{2}
Use the distributive property to multiply -3 by 2+\sqrt{2}.