Evaluate
\frac{1}{195}\approx 0.005128205
Factor
\frac{1}{3 \cdot 5 \cdot 13} = 0.005128205128205128
Share
Copied to clipboard
-\frac{6}{13}-\frac{-7}{15}
Fraction \frac{-6}{13} can be rewritten as -\frac{6}{13} by extracting the negative sign.
-\frac{6}{13}-\left(-\frac{7}{15}\right)
Fraction \frac{-7}{15} can be rewritten as -\frac{7}{15} by extracting the negative sign.
-\frac{6}{13}+\frac{7}{15}
The opposite of -\frac{7}{15} is \frac{7}{15}.
-\frac{90}{195}+\frac{91}{195}
Least common multiple of 13 and 15 is 195. Convert -\frac{6}{13} and \frac{7}{15} to fractions with denominator 195.
\frac{-90+91}{195}
Since -\frac{90}{195} and \frac{91}{195} have the same denominator, add them by adding their numerators.
\frac{1}{195}
Add -90 and 91 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}