Solve for t
t = \frac{36}{13} = 2\frac{10}{13} \approx 2.769230769
Share
Copied to clipboard
-5t-\left(t-6\right)\times 7=t+6
Variable t cannot be equal to any of the values -6,6 since division by zero is not defined. Multiply both sides of the equation by \left(t-6\right)\left(t+6\right), the least common multiple of t^{2}-36,t+6,t-6.
-5t-\left(7t-42\right)=t+6
Use the distributive property to multiply t-6 by 7.
-5t-7t+42=t+6
To find the opposite of 7t-42, find the opposite of each term.
-12t+42=t+6
Combine -5t and -7t to get -12t.
-12t+42-t=6
Subtract t from both sides.
-13t+42=6
Combine -12t and -t to get -13t.
-13t=6-42
Subtract 42 from both sides.
-13t=-36
Subtract 42 from 6 to get -36.
t=\frac{-36}{-13}
Divide both sides by -13.
t=\frac{36}{13}
Fraction \frac{-36}{-13} can be simplified to \frac{36}{13} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}