Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(-5a^{1}\right)^{1}\times \frac{1}{-a^{5}}
Use the rules of exponents to simplify the expression.
\left(-5\right)^{1}\left(a^{1}\right)^{1}\left(-1\right)\times \frac{1}{a^{5}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-5\right)^{1}\left(-1\right)\left(a^{1}\right)^{1}\times \frac{1}{a^{5}}
Use the Commutative Property of Multiplication.
\left(-5\right)^{1}\left(-1\right)a^{1}a^{5\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-5\right)^{1}\left(-1\right)a^{1}a^{-5}
Multiply 5 times -1.
\left(-5\right)^{1}\left(-1\right)a^{1-5}
To multiply powers of the same base, add their exponents.
\left(-5\right)^{1}\left(-1\right)a^{-4}
Add the exponents 1 and -5.
-5\left(-1\right)a^{-4}
Raise -5 to the power 1.
5a^{-4}
Multiply -5 times -1.
\frac{\left(-5\right)^{1}a^{1}}{-a^{5}}
Use the rules of exponents to simplify the expression.
\frac{\left(-5\right)^{1}a^{1-5}}{-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-5\right)^{1}a^{-4}}{-1}
Subtract 5 from 1.
5a^{-4}
Divide -5 by -1.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{5}{-1}\right)a^{1-5})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}a}(5a^{-4})
Do the arithmetic.
-4\times 5a^{-4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-20a^{-5}
Do the arithmetic.