Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-9}{-4-6i}
Subtract 4 from -5 to get -9.
\frac{-9\left(-4+6i\right)}{\left(-4-6i\right)\left(-4+6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -4+6i.
\frac{-9\left(-4+6i\right)}{\left(-4\right)^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-9\left(-4+6i\right)}{52}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-9\left(-4\right)-9\times \left(6i\right)}{52}
Multiply -9 times -4+6i.
\frac{36-54i}{52}
Do the multiplications in -9\left(-4\right)-9\times \left(6i\right).
\frac{9}{13}-\frac{27}{26}i
Divide 36-54i by 52 to get \frac{9}{13}-\frac{27}{26}i.
Re(\frac{-9}{-4-6i})
Subtract 4 from -5 to get -9.
Re(\frac{-9\left(-4+6i\right)}{\left(-4-6i\right)\left(-4+6i\right)})
Multiply both numerator and denominator of \frac{-9}{-4-6i} by the complex conjugate of the denominator, -4+6i.
Re(\frac{-9\left(-4+6i\right)}{\left(-4\right)^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-9\left(-4+6i\right)}{52})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-9\left(-4\right)-9\times \left(6i\right)}{52})
Multiply -9 times -4+6i.
Re(\frac{36-54i}{52})
Do the multiplications in -9\left(-4\right)-9\times \left(6i\right).
Re(\frac{9}{13}-\frac{27}{26}i)
Divide 36-54i by 52 to get \frac{9}{13}-\frac{27}{26}i.
\frac{9}{13}
The real part of \frac{9}{13}-\frac{27}{26}i is \frac{9}{13}.