Evaluate
\frac{20}{61}+\frac{37}{61}i\approx 0.327868852+0.606557377i
Real Part
\frac{20}{61} = 0.32786885245901637
Share
Copied to clipboard
\frac{\left(-5-2i\right)\left(-6-5i\right)}{\left(-6+5i\right)\left(-6-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -6-5i.
\frac{\left(-5-2i\right)\left(-6-5i\right)}{\left(-6\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-5-2i\right)\left(-6-5i\right)}{61}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-5\left(-6\right)-5\times \left(-5i\right)-2i\left(-6\right)-2\left(-5\right)i^{2}}{61}
Multiply complex numbers -5-2i and -6-5i like you multiply binomials.
\frac{-5\left(-6\right)-5\times \left(-5i\right)-2i\left(-6\right)-2\left(-5\right)\left(-1\right)}{61}
By definition, i^{2} is -1.
\frac{30+25i+12i-10}{61}
Do the multiplications in -5\left(-6\right)-5\times \left(-5i\right)-2i\left(-6\right)-2\left(-5\right)\left(-1\right).
\frac{30-10+\left(25+12\right)i}{61}
Combine the real and imaginary parts in 30+25i+12i-10.
\frac{20+37i}{61}
Do the additions in 30-10+\left(25+12\right)i.
\frac{20}{61}+\frac{37}{61}i
Divide 20+37i by 61 to get \frac{20}{61}+\frac{37}{61}i.
Re(\frac{\left(-5-2i\right)\left(-6-5i\right)}{\left(-6+5i\right)\left(-6-5i\right)})
Multiply both numerator and denominator of \frac{-5-2i}{-6+5i} by the complex conjugate of the denominator, -6-5i.
Re(\frac{\left(-5-2i\right)\left(-6-5i\right)}{\left(-6\right)^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-5-2i\right)\left(-6-5i\right)}{61})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-5\left(-6\right)-5\times \left(-5i\right)-2i\left(-6\right)-2\left(-5\right)i^{2}}{61})
Multiply complex numbers -5-2i and -6-5i like you multiply binomials.
Re(\frac{-5\left(-6\right)-5\times \left(-5i\right)-2i\left(-6\right)-2\left(-5\right)\left(-1\right)}{61})
By definition, i^{2} is -1.
Re(\frac{30+25i+12i-10}{61})
Do the multiplications in -5\left(-6\right)-5\times \left(-5i\right)-2i\left(-6\right)-2\left(-5\right)\left(-1\right).
Re(\frac{30-10+\left(25+12\right)i}{61})
Combine the real and imaginary parts in 30+25i+12i-10.
Re(\frac{20+37i}{61})
Do the additions in 30-10+\left(25+12\right)i.
Re(\frac{20}{61}+\frac{37}{61}i)
Divide 20+37i by 61 to get \frac{20}{61}+\frac{37}{61}i.
\frac{20}{61}
The real part of \frac{20}{61}+\frac{37}{61}i is \frac{20}{61}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}