Evaluate
\frac{56+4x-5x^{2}}{\left(x-4\right)\left(x+4\right)^{2}}
Differentiate w.r.t. x
\frac{5x^{3}-28x^{2}+8x+160}{\left(x-4\right)^{2}\left(x+4\right)^{3}}
Graph
Share
Copied to clipboard
\frac{-5}{x+4}+\frac{5}{\left(x+4\right)^{2}}-\frac{1}{x^{2}-16}
Factor x^{2}+8x+16.
\frac{-5\left(x+4\right)}{\left(x+4\right)^{2}}+\frac{5}{\left(x+4\right)^{2}}-\frac{1}{x^{2}-16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+4 and \left(x+4\right)^{2} is \left(x+4\right)^{2}. Multiply \frac{-5}{x+4} times \frac{x+4}{x+4}.
\frac{-5\left(x+4\right)+5}{\left(x+4\right)^{2}}-\frac{1}{x^{2}-16}
Since \frac{-5\left(x+4\right)}{\left(x+4\right)^{2}} and \frac{5}{\left(x+4\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-5x-20+5}{\left(x+4\right)^{2}}-\frac{1}{x^{2}-16}
Do the multiplications in -5\left(x+4\right)+5.
\frac{-5x-15}{\left(x+4\right)^{2}}-\frac{1}{x^{2}-16}
Combine like terms in -5x-20+5.
\frac{-5x-15}{\left(x+4\right)^{2}}-\frac{1}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-16.
\frac{\left(-5x-15\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)^{2}}-\frac{x+4}{\left(x-4\right)\left(x+4\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+4\right)^{2} and \left(x-4\right)\left(x+4\right) is \left(x-4\right)\left(x+4\right)^{2}. Multiply \frac{-5x-15}{\left(x+4\right)^{2}} times \frac{x-4}{x-4}. Multiply \frac{1}{\left(x-4\right)\left(x+4\right)} times \frac{x+4}{x+4}.
\frac{\left(-5x-15\right)\left(x-4\right)-\left(x+4\right)}{\left(x-4\right)\left(x+4\right)^{2}}
Since \frac{\left(-5x-15\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)^{2}} and \frac{x+4}{\left(x-4\right)\left(x+4\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-5x^{2}+20x-15x+60-x-4}{\left(x-4\right)\left(x+4\right)^{2}}
Do the multiplications in \left(-5x-15\right)\left(x-4\right)-\left(x+4\right).
\frac{-5x^{2}+4x+56}{\left(x-4\right)\left(x+4\right)^{2}}
Combine like terms in -5x^{2}+20x-15x+60-x-4.
\frac{-5x^{2}+4x+56}{x^{3}+4x^{2}-16x-64}
Expand \left(x-4\right)\left(x+4\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}