Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-5}{x+4}+\frac{5}{\left(x+4\right)^{2}}-\frac{1}{x^{2}-16}
Factor x^{2}+8x+16.
\frac{-5\left(x+4\right)}{\left(x+4\right)^{2}}+\frac{5}{\left(x+4\right)^{2}}-\frac{1}{x^{2}-16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+4 and \left(x+4\right)^{2} is \left(x+4\right)^{2}. Multiply \frac{-5}{x+4} times \frac{x+4}{x+4}.
\frac{-5\left(x+4\right)+5}{\left(x+4\right)^{2}}-\frac{1}{x^{2}-16}
Since \frac{-5\left(x+4\right)}{\left(x+4\right)^{2}} and \frac{5}{\left(x+4\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-5x-20+5}{\left(x+4\right)^{2}}-\frac{1}{x^{2}-16}
Do the multiplications in -5\left(x+4\right)+5.
\frac{-5x-15}{\left(x+4\right)^{2}}-\frac{1}{x^{2}-16}
Combine like terms in -5x-20+5.
\frac{-5x-15}{\left(x+4\right)^{2}}-\frac{1}{\left(x-4\right)\left(x+4\right)}
Factor x^{2}-16.
\frac{\left(-5x-15\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)^{2}}-\frac{x+4}{\left(x-4\right)\left(x+4\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+4\right)^{2} and \left(x-4\right)\left(x+4\right) is \left(x-4\right)\left(x+4\right)^{2}. Multiply \frac{-5x-15}{\left(x+4\right)^{2}} times \frac{x-4}{x-4}. Multiply \frac{1}{\left(x-4\right)\left(x+4\right)} times \frac{x+4}{x+4}.
\frac{\left(-5x-15\right)\left(x-4\right)-\left(x+4\right)}{\left(x-4\right)\left(x+4\right)^{2}}
Since \frac{\left(-5x-15\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)^{2}} and \frac{x+4}{\left(x-4\right)\left(x+4\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-5x^{2}+20x-15x+60-x-4}{\left(x-4\right)\left(x+4\right)^{2}}
Do the multiplications in \left(-5x-15\right)\left(x-4\right)-\left(x+4\right).
\frac{-5x^{2}+4x+56}{\left(x-4\right)\left(x+4\right)^{2}}
Combine like terms in -5x^{2}+20x-15x+60-x-4.
\frac{-5x^{2}+4x+56}{x^{3}+4x^{2}-16x-64}
Expand \left(x-4\right)\left(x+4\right)^{2}.