Solve for x
x = \frac{24}{19} = 1\frac{5}{19} \approx 1.263157895
Graph
Share
Copied to clipboard
\left(5x-4\right)\left(-5\right)=\left(-2-3x\right)\times 2
Variable x cannot be equal to any of the values -\frac{2}{3},\frac{4}{5} since division by zero is not defined. Multiply both sides of the equation by \left(5x-4\right)\left(3x+2\right), the least common multiple of 3x+2,4-5x.
-25x+20=\left(-2-3x\right)\times 2
Use the distributive property to multiply 5x-4 by -5.
-25x+20=-4-6x
Use the distributive property to multiply -2-3x by 2.
-25x+20+6x=-4
Add 6x to both sides.
-19x+20=-4
Combine -25x and 6x to get -19x.
-19x=-4-20
Subtract 20 from both sides.
-19x=-24
Subtract 20 from -4 to get -24.
x=\frac{-24}{-19}
Divide both sides by -19.
x=\frac{24}{19}
Fraction \frac{-24}{-19} can be simplified to \frac{24}{19} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}