Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-5+4i\right)\left(-4+i\right)}{\left(-4-i\right)\left(-4+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -4+i.
\frac{\left(-5+4i\right)\left(-4+i\right)}{\left(-4\right)^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-5+4i\right)\left(-4+i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-5\left(-4\right)-5i+4i\left(-4\right)+4i^{2}}{17}
Multiply complex numbers -5+4i and -4+i like you multiply binomials.
\frac{-5\left(-4\right)-5i+4i\left(-4\right)+4\left(-1\right)}{17}
By definition, i^{2} is -1.
\frac{20-5i-16i-4}{17}
Do the multiplications in -5\left(-4\right)-5i+4i\left(-4\right)+4\left(-1\right).
\frac{20-4+\left(-5-16\right)i}{17}
Combine the real and imaginary parts in 20-5i-16i-4.
\frac{16-21i}{17}
Do the additions in 20-4+\left(-5-16\right)i.
\frac{16}{17}-\frac{21}{17}i
Divide 16-21i by 17 to get \frac{16}{17}-\frac{21}{17}i.
Re(\frac{\left(-5+4i\right)\left(-4+i\right)}{\left(-4-i\right)\left(-4+i\right)})
Multiply both numerator and denominator of \frac{-5+4i}{-4-i} by the complex conjugate of the denominator, -4+i.
Re(\frac{\left(-5+4i\right)\left(-4+i\right)}{\left(-4\right)^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-5+4i\right)\left(-4+i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-5\left(-4\right)-5i+4i\left(-4\right)+4i^{2}}{17})
Multiply complex numbers -5+4i and -4+i like you multiply binomials.
Re(\frac{-5\left(-4\right)-5i+4i\left(-4\right)+4\left(-1\right)}{17})
By definition, i^{2} is -1.
Re(\frac{20-5i-16i-4}{17})
Do the multiplications in -5\left(-4\right)-5i+4i\left(-4\right)+4\left(-1\right).
Re(\frac{20-4+\left(-5-16\right)i}{17})
Combine the real and imaginary parts in 20-5i-16i-4.
Re(\frac{16-21i}{17})
Do the additions in 20-4+\left(-5-16\right)i.
Re(\frac{16}{17}-\frac{21}{17}i)
Divide 16-21i by 17 to get \frac{16}{17}-\frac{21}{17}i.
\frac{16}{17}
The real part of \frac{16}{17}-\frac{21}{17}i is \frac{16}{17}.