Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{-450+1}{\left(\frac{2}{3}\right)^{-2}}-\frac{6\sqrt{31}}{-\sqrt{11}}
Divide 7^{5} by 7^{5} to get 1.
\frac{-449}{\left(\frac{2}{3}\right)^{-2}}-\frac{6\sqrt{31}}{-\sqrt{11}}
Add -450 and 1 to get -449.
\frac{-449}{\frac{9}{4}}-\frac{6\sqrt{31}}{-\sqrt{11}}
Calculate \frac{2}{3} to the power of -2 and get \frac{9}{4}.
-449\times \frac{4}{9}-\frac{6\sqrt{31}}{-\sqrt{11}}
Divide -449 by \frac{9}{4} by multiplying -449 by the reciprocal of \frac{9}{4}.
-\frac{1796}{9}-\frac{6\sqrt{31}}{-\sqrt{11}}
Multiply -449 and \frac{4}{9} to get -\frac{1796}{9}.
-\frac{1796}{9}-\frac{-6\sqrt{31}}{\sqrt{11}}
Cancel out -1 in both numerator and denominator.
-\frac{1796}{9}-\frac{-6\sqrt{31}\sqrt{11}}{\left(\sqrt{11}\right)^{2}}
Rationalize the denominator of \frac{-6\sqrt{31}}{\sqrt{11}} by multiplying numerator and denominator by \sqrt{11}.
-\frac{1796}{9}-\frac{-6\sqrt{31}\sqrt{11}}{11}
The square of \sqrt{11} is 11.
-\frac{1796}{9}-\frac{-6\sqrt{341}}{11}
To multiply \sqrt{31} and \sqrt{11}, multiply the numbers under the square root.
-\frac{1796\times 11}{99}-\frac{9\left(-6\right)\sqrt{341}}{99}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 11 is 99. Multiply -\frac{1796}{9} times \frac{11}{11}. Multiply \frac{-6\sqrt{341}}{11} times \frac{9}{9}.
\frac{-1796\times 11-9\left(-6\right)\sqrt{341}}{99}
Since -\frac{1796\times 11}{99} and \frac{9\left(-6\right)\sqrt{341}}{99} have the same denominator, subtract them by subtracting their numerators.
\frac{-19756+54\sqrt{341}}{99}
Do the multiplications in -1796\times 11-9\left(-6\right)\sqrt{341}.