Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-4x^{6}\right)^{1}\times \frac{1}{-2x^{6}}
Use the rules of exponents to simplify the expression.
\left(-4\right)^{1}\left(x^{6}\right)^{1}\times \frac{1}{-2}\times \frac{1}{x^{6}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-4\right)^{1}\times \frac{1}{-2}\left(x^{6}\right)^{1}\times \frac{1}{x^{6}}
Use the Commutative Property of Multiplication.
\left(-4\right)^{1}\times \frac{1}{-2}x^{6}x^{6\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-4\right)^{1}\times \frac{1}{-2}x^{6}x^{-6}
Multiply 6 times -1.
\left(-4\right)^{1}\times \frac{1}{-2}x^{6-6}
To multiply powers of the same base, add their exponents.
\left(-4\right)^{1}\times \frac{1}{-2}x^{0}
Add the exponents 6 and -6.
-4\times \frac{1}{-2}x^{0}
Raise -4 to the power 1.
-4\left(-\frac{1}{2}\right)x^{0}
Raise -2 to the power -1.
2x^{0}
Multiply -4 times -\frac{1}{2}.
2\times 1
For any term t except 0, t^{0}=1.
2
For any term t, t\times 1=t and 1t=t.
\frac{\left(-4\right)^{1}x^{6}}{\left(-2\right)^{1}x^{6}}
Use the rules of exponents to simplify the expression.
\frac{\left(-4\right)^{1}x^{6-6}}{\left(-2\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-4\right)^{1}x^{0}}{\left(-2\right)^{1}}
Subtract 6 from 6.
\frac{\left(-4\right)^{1}}{\left(-2\right)^{1}}
For any number a except 0, a^{0}=1.
2
Divide -4 by -2.