Solve for x (complex solution)
x\in \mathrm{C}\setminus 4,-\frac{3}{4},0,\frac{1}{2}
Solve for x
x\in \mathrm{R}\setminus 4,-\frac{3}{4},0,\frac{1}{2}
Graph
Share
Copied to clipboard
\left(1-2x\right)\left(-4x^{3}-7x^{2}-3x\right)=\left(4x+3\right)\left(2x^{3}+x^{2}-x\right)
Variable x cannot be equal to any of the values -\frac{3}{4},0,\frac{1}{2},4 since division by zero is not defined. Multiply both sides of the equation by 2x\left(\frac{1}{2}x-2\right)\left(2x-1\right)\left(4x+3\right), the least common multiple of 12x+13x^{2}-4x^{3},2x^{3}-9x^{2}+4x.
10x^{3}-x^{2}-3x+8x^{4}=\left(4x+3\right)\left(2x^{3}+x^{2}-x\right)
Use the distributive property to multiply 1-2x by -4x^{3}-7x^{2}-3x and combine like terms.
10x^{3}-x^{2}-3x+8x^{4}=8x^{4}+10x^{3}-x^{2}-3x
Use the distributive property to multiply 4x+3 by 2x^{3}+x^{2}-x and combine like terms.
10x^{3}-x^{2}-3x+8x^{4}-8x^{4}=10x^{3}-x^{2}-3x
Subtract 8x^{4} from both sides.
10x^{3}-x^{2}-3x=10x^{3}-x^{2}-3x
Combine 8x^{4} and -8x^{4} to get 0.
10x^{3}-x^{2}-3x-10x^{3}=-x^{2}-3x
Subtract 10x^{3} from both sides.
-x^{2}-3x=-x^{2}-3x
Combine 10x^{3} and -10x^{3} to get 0.
-x^{2}-3x+x^{2}=-3x
Add x^{2} to both sides.
-3x=-3x
Combine -x^{2} and x^{2} to get 0.
-3x+3x=0
Add 3x to both sides.
0=0
Combine -3x and 3x to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{C}
This is true for any x.
x\in \mathrm{C}\setminus -\frac{3}{4},0,\frac{1}{2},4
Variable x cannot be equal to any of the values -\frac{3}{4},\frac{1}{2},4,0.
\left(1-2x\right)\left(-4x^{3}-7x^{2}-3x\right)=\left(4x+3\right)\left(2x^{3}+x^{2}-x\right)
Variable x cannot be equal to any of the values -\frac{3}{4},0,\frac{1}{2},4 since division by zero is not defined. Multiply both sides of the equation by 2x\left(\frac{1}{2}x-2\right)\left(2x-1\right)\left(4x+3\right), the least common multiple of 12x+13x^{2}-4x^{3},2x^{3}-9x^{2}+4x.
10x^{3}-x^{2}-3x+8x^{4}=\left(4x+3\right)\left(2x^{3}+x^{2}-x\right)
Use the distributive property to multiply 1-2x by -4x^{3}-7x^{2}-3x and combine like terms.
10x^{3}-x^{2}-3x+8x^{4}=8x^{4}+10x^{3}-x^{2}-3x
Use the distributive property to multiply 4x+3 by 2x^{3}+x^{2}-x and combine like terms.
10x^{3}-x^{2}-3x+8x^{4}-8x^{4}=10x^{3}-x^{2}-3x
Subtract 8x^{4} from both sides.
10x^{3}-x^{2}-3x=10x^{3}-x^{2}-3x
Combine 8x^{4} and -8x^{4} to get 0.
10x^{3}-x^{2}-3x-10x^{3}=-x^{2}-3x
Subtract 10x^{3} from both sides.
-x^{2}-3x=-x^{2}-3x
Combine 10x^{3} and -10x^{3} to get 0.
-x^{2}-3x+x^{2}=-3x
Add x^{2} to both sides.
-3x=-3x
Combine -x^{2} and x^{2} to get 0.
-3x+3x=0
Add 3x to both sides.
0=0
Combine -3x and 3x to get 0.
\text{true}
Compare 0 and 0.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus -\frac{3}{4},0,\frac{1}{2},4
Variable x cannot be equal to any of the values -\frac{3}{4},\frac{1}{2},4,0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}