Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x+8=-2x^{2}+4x-2
Multiply both sides of the equation by 2.
-4x+8+2x^{2}=4x-2
Add 2x^{2} to both sides.
-4x+8+2x^{2}-4x=-2
Subtract 4x from both sides.
-8x+8+2x^{2}=-2
Combine -4x and -4x to get -8x.
-8x+8+2x^{2}+2=0
Add 2 to both sides.
-8x+10+2x^{2}=0
Add 8 and 2 to get 10.
2x^{2}-8x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 10}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 10}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 10}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64-80}}{2\times 2}
Multiply -8 times 10.
x=\frac{-\left(-8\right)±\sqrt{-16}}{2\times 2}
Add 64 to -80.
x=\frac{-\left(-8\right)±4i}{2\times 2}
Take the square root of -16.
x=\frac{8±4i}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±4i}{4}
Multiply 2 times 2.
x=\frac{8+4i}{4}
Now solve the equation x=\frac{8±4i}{4} when ± is plus. Add 8 to 4i.
x=2+i
Divide 8+4i by 4.
x=\frac{8-4i}{4}
Now solve the equation x=\frac{8±4i}{4} when ± is minus. Subtract 4i from 8.
x=2-i
Divide 8-4i by 4.
x=2+i x=2-i
The equation is now solved.
-4x+8=-2x^{2}+4x-2
Multiply both sides of the equation by 2.
-4x+8+2x^{2}=4x-2
Add 2x^{2} to both sides.
-4x+8+2x^{2}-4x=-2
Subtract 4x from both sides.
-8x+8+2x^{2}=-2
Combine -4x and -4x to get -8x.
-8x+2x^{2}=-2-8
Subtract 8 from both sides.
-8x+2x^{2}=-10
Subtract 8 from -2 to get -10.
2x^{2}-8x=-10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-8x}{2}=-\frac{10}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{10}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=-\frac{10}{2}
Divide -8 by 2.
x^{2}-4x=-5
Divide -10 by 2.
x^{2}-4x+\left(-2\right)^{2}=-5+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-5+4
Square -2.
x^{2}-4x+4=-1
Add -5 to 4.
\left(x-2\right)^{2}=-1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x-2=i x-2=-i
Simplify.
x=2+i x=2-i
Add 2 to both sides of the equation.