Solve for Q
Q=\frac{4s}{s+1}
s\neq -1\text{ and }s\neq 0
Solve for s
s=-\frac{Q}{Q-4}
Q\neq 0\text{ and }Q\neq 4
Share
Copied to clipboard
-4Q+2Q=-2\left(4-Q\right)s
Multiply both sides of the equation by s.
-2Q=-2\left(4-Q\right)s
Combine -4Q and 2Q to get -2Q.
-2Q=\left(-8+2Q\right)s
Use the distributive property to multiply -2 by 4-Q.
-2Q=-8s+2Qs
Use the distributive property to multiply -8+2Q by s.
-2Q-2Qs=-8s
Subtract 2Qs from both sides.
\left(-2-2s\right)Q=-8s
Combine all terms containing Q.
\left(-2s-2\right)Q=-8s
The equation is in standard form.
\frac{\left(-2s-2\right)Q}{-2s-2}=-\frac{8s}{-2s-2}
Divide both sides by -2-2s.
Q=-\frac{8s}{-2s-2}
Dividing by -2-2s undoes the multiplication by -2-2s.
Q=\frac{4s}{s+1}
Divide -8s by -2-2s.
-4Q+2Q=-2\left(4-Q\right)s
Variable s cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by s.
-2Q=-2\left(4-Q\right)s
Combine -4Q and 2Q to get -2Q.
-2Q=\left(-8+2Q\right)s
Use the distributive property to multiply -2 by 4-Q.
-2Q=-8s+2Qs
Use the distributive property to multiply -8+2Q by s.
-8s+2Qs=-2Q
Swap sides so that all variable terms are on the left hand side.
\left(-8+2Q\right)s=-2Q
Combine all terms containing s.
\left(2Q-8\right)s=-2Q
The equation is in standard form.
\frac{\left(2Q-8\right)s}{2Q-8}=-\frac{2Q}{2Q-8}
Divide both sides by -8+2Q.
s=-\frac{2Q}{2Q-8}
Dividing by -8+2Q undoes the multiplication by -8+2Q.
s=-\frac{Q}{Q-4}
Divide -2Q by -8+2Q.
s=-\frac{Q}{Q-4}\text{, }s\neq 0
Variable s cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}