Evaluate
\frac{\sqrt{15}}{2}+\sqrt{5}-\sqrt{3}-2\approx 0.440508843
Factor
\frac{\sqrt{15} + 2 \sqrt{5} - 2 \sqrt{3} - 4}{2} = 0.4405088430346207
Quiz
Arithmetic
5 problems similar to:
\frac { - 4 - 2 \sqrt { 3 } } { 1 - ( 2 + \sqrt { 5 } ) ^ { 2 } }
Share
Copied to clipboard
\frac{-4-2\sqrt{3}}{1-\left(4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{5}\right)^{2}.
\frac{-4-2\sqrt{3}}{1-\left(4+4\sqrt{5}+5\right)}
The square of \sqrt{5} is 5.
\frac{-4-2\sqrt{3}}{1-\left(9+4\sqrt{5}\right)}
Add 4 and 5 to get 9.
\frac{-4-2\sqrt{3}}{1-9-4\sqrt{5}}
To find the opposite of 9+4\sqrt{5}, find the opposite of each term.
\frac{-4-2\sqrt{3}}{-8-4\sqrt{5}}
Subtract 9 from 1 to get -8.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{\left(-8-4\sqrt{5}\right)\left(-8+4\sqrt{5}\right)}
Rationalize the denominator of \frac{-4-2\sqrt{3}}{-8-4\sqrt{5}} by multiplying numerator and denominator by -8+4\sqrt{5}.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{\left(-8\right)^{2}-\left(-4\sqrt{5}\right)^{2}}
Consider \left(-8-4\sqrt{5}\right)\left(-8+4\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{64-\left(-4\sqrt{5}\right)^{2}}
Calculate -8 to the power of 2 and get 64.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{64-\left(-4\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-4\sqrt{5}\right)^{2}.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{64-16\left(\sqrt{5}\right)^{2}}
Calculate -4 to the power of 2 and get 16.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{64-16\times 5}
The square of \sqrt{5} is 5.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{64-80}
Multiply 16 and 5 to get 80.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{-16}
Subtract 80 from 64 to get -16.
\frac{32-16\sqrt{5}+16\sqrt{3}-8\sqrt{3}\sqrt{5}}{-16}
Use the distributive property to multiply -4-2\sqrt{3} by -8+4\sqrt{5}.
\frac{32-16\sqrt{5}+16\sqrt{3}-8\sqrt{15}}{-16}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}