Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{-4-2\sqrt{3}}{1-\left(4+4\sqrt{5}+\left(\sqrt{5}\right)^{2}\right)}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{5}\right)^{2}.
\frac{-4-2\sqrt{3}}{1-\left(4+4\sqrt{5}+5\right)}
The square of \sqrt{5} is 5.
\frac{-4-2\sqrt{3}}{1-\left(9+4\sqrt{5}\right)}
Add 4 and 5 to get 9.
\frac{-4-2\sqrt{3}}{1-9-4\sqrt{5}}
To find the opposite of 9+4\sqrt{5}, find the opposite of each term.
\frac{-4-2\sqrt{3}}{-8-4\sqrt{5}}
Subtract 9 from 1 to get -8.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{\left(-8-4\sqrt{5}\right)\left(-8+4\sqrt{5}\right)}
Rationalize the denominator of \frac{-4-2\sqrt{3}}{-8-4\sqrt{5}} by multiplying numerator and denominator by -8+4\sqrt{5}.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{\left(-8\right)^{2}-\left(-4\sqrt{5}\right)^{2}}
Consider \left(-8-4\sqrt{5}\right)\left(-8+4\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{64-\left(-4\sqrt{5}\right)^{2}}
Calculate -8 to the power of 2 and get 64.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{64-\left(-4\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-4\sqrt{5}\right)^{2}.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{64-16\left(\sqrt{5}\right)^{2}}
Calculate -4 to the power of 2 and get 16.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{64-16\times 5}
The square of \sqrt{5} is 5.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{64-80}
Multiply 16 and 5 to get 80.
\frac{\left(-4-2\sqrt{3}\right)\left(-8+4\sqrt{5}\right)}{-16}
Subtract 80 from 64 to get -16.
\frac{32-16\sqrt{5}+16\sqrt{3}-8\sqrt{3}\sqrt{5}}{-16}
Use the distributive property to multiply -4-2\sqrt{3} by -8+4\sqrt{5}.
\frac{32-16\sqrt{5}+16\sqrt{3}-8\sqrt{15}}{-16}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.