Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-4}{x-5}+\frac{7x-27}{\left(x-5\right)\left(x-3\right)}
Factor x^{2}-8x+15.
\frac{-4\left(x-3\right)}{\left(x-5\right)\left(x-3\right)}+\frac{7x-27}{\left(x-5\right)\left(x-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and \left(x-5\right)\left(x-3\right) is \left(x-5\right)\left(x-3\right). Multiply \frac{-4}{x-5} times \frac{x-3}{x-3}.
\frac{-4\left(x-3\right)+7x-27}{\left(x-5\right)\left(x-3\right)}
Since \frac{-4\left(x-3\right)}{\left(x-5\right)\left(x-3\right)} and \frac{7x-27}{\left(x-5\right)\left(x-3\right)} have the same denominator, add them by adding their numerators.
\frac{-4x+12+7x-27}{\left(x-5\right)\left(x-3\right)}
Do the multiplications in -4\left(x-3\right)+7x-27.
\frac{3x-15}{\left(x-5\right)\left(x-3\right)}
Combine like terms in -4x+12+7x-27.
\frac{3\left(x-5\right)}{\left(x-5\right)\left(x-3\right)}
Factor the expressions that are not already factored in \frac{3x-15}{\left(x-5\right)\left(x-3\right)}.
\frac{3}{x-3}
Cancel out x-5 in both numerator and denominator.
\frac{-4}{x-5}+\frac{7x-27}{\left(x-5\right)\left(x-3\right)}
Factor x^{2}-8x+15.
\frac{-4\left(x-3\right)}{\left(x-5\right)\left(x-3\right)}+\frac{7x-27}{\left(x-5\right)\left(x-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and \left(x-5\right)\left(x-3\right) is \left(x-5\right)\left(x-3\right). Multiply \frac{-4}{x-5} times \frac{x-3}{x-3}.
\frac{-4\left(x-3\right)+7x-27}{\left(x-5\right)\left(x-3\right)}
Since \frac{-4\left(x-3\right)}{\left(x-5\right)\left(x-3\right)} and \frac{7x-27}{\left(x-5\right)\left(x-3\right)} have the same denominator, add them by adding their numerators.
\frac{-4x+12+7x-27}{\left(x-5\right)\left(x-3\right)}
Do the multiplications in -4\left(x-3\right)+7x-27.
\frac{3x-15}{\left(x-5\right)\left(x-3\right)}
Combine like terms in -4x+12+7x-27.
\frac{3\left(x-5\right)}{\left(x-5\right)\left(x-3\right)}
Factor the expressions that are not already factored in \frac{3x-15}{\left(x-5\right)\left(x-3\right)}.
\frac{3}{x-3}
Cancel out x-5 in both numerator and denominator.