\frac { - 4 } { 5 } = \frac { - 0,5 - y } { 3 - x }
Solve for x
x=-\frac{5y}{4}+2,375
y\neq -0,5
Solve for y
y=-\frac{4x}{5}+1,9
x\neq 3
Graph
Share
Copied to clipboard
\left(x-3\right)\left(-4\right)=-5\left(-0,5-y\right)
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 5\left(x-3\right), the least common multiple of 5;3-x.
-4x+12=-5\left(-0,5-y\right)
Use the distributive property to multiply x-3 by -4.
-4x+12=2,5+5y
Use the distributive property to multiply -5 by -0,5-y.
-4x=2,5+5y-12
Subtract 12 from both sides.
-4x=-9,5+5y
Subtract 12 from 2,5 to get -9,5.
-4x=5y-9,5
The equation is in standard form.
\frac{-4x}{-4}=\frac{5y-9,5}{-4}
Divide both sides by -4.
x=\frac{5y-9,5}{-4}
Dividing by -4 undoes the multiplication by -4.
x=-\frac{5y}{4}+\frac{19}{8}
Divide -9,5+5y by -4.
x=-\frac{5y}{4}+\frac{19}{8}\text{, }x\neq 3
Variable x cannot be equal to 3.
\left(x-3\right)\left(-4\right)=-5\left(-0,5-y\right)
Multiply both sides of the equation by 5\left(x-3\right), the least common multiple of 5;3-x.
-4x+12=-5\left(-0,5-y\right)
Use the distributive property to multiply x-3 by -4.
-4x+12=2,5+5y
Use the distributive property to multiply -5 by -0,5-y.
2,5+5y=-4x+12
Swap sides so that all variable terms are on the left hand side.
5y=-4x+12-2,5
Subtract 2,5 from both sides.
5y=-4x+9,5
Subtract 2,5 from 12 to get 9,5.
5y=9,5-4x
The equation is in standard form.
\frac{5y}{5}=\frac{9,5-4x}{5}
Divide both sides by 5.
y=\frac{9,5-4x}{5}
Dividing by 5 undoes the multiplication by 5.
y=-\frac{4x}{5}+\frac{19}{10}
Divide -4x+9,5 by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}