Evaluate
\frac{b^{5}x^{7}}{27}
Differentiate w.r.t. x
\frac{7b^{5}x^{6}}{27}
Graph
Share
Copied to clipboard
\frac{-\frac{4}{15}b^{2}x^{5}}{\frac{-36}{5}}b^{3}x^{2}
Fraction \frac{-4}{15} can be rewritten as -\frac{4}{15} by extracting the negative sign.
\frac{-\frac{4}{15}b^{2}x^{5}}{-\frac{36}{5}}b^{3}x^{2}
Fraction \frac{-36}{5} can be rewritten as -\frac{36}{5} by extracting the negative sign.
\frac{-\frac{4}{15}b^{2}x^{5}\times 5}{-36}b^{3}x^{2}
Divide -\frac{4}{15}b^{2}x^{5} by -\frac{36}{5} by multiplying -\frac{4}{15}b^{2}x^{5} by the reciprocal of -\frac{36}{5}.
\frac{-\frac{4}{3}b^{2}x^{5}}{-36}b^{3}x^{2}
Multiply -\frac{4}{15} and 5 to get -\frac{4}{3}.
\frac{1}{27}b^{2}x^{5}b^{3}x^{2}
Divide -\frac{4}{3}b^{2}x^{5} by -36 to get \frac{1}{27}b^{2}x^{5}.
\frac{1}{27}b^{5}x^{5}x^{2}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{1}{27}b^{5}x^{7}
To multiply powers of the same base, add their exponents. Add 5 and 2 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}