Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-4\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-i.
\frac{-4\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-4\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-4-4\left(-i\right)}{2}
Multiply -4 times 1-i.
\frac{-4+4i}{2}
Do the multiplications in -4-4\left(-i\right).
-2+2i
Divide -4+4i by 2 to get -2+2i.
Re(\frac{-4\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{-4}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\frac{-4\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-4\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-4-4\left(-i\right)}{2})
Multiply -4 times 1-i.
Re(\frac{-4+4i}{2})
Do the multiplications in -4-4\left(-i\right).
Re(-2+2i)
Divide -4+4i by 2 to get -2+2i.
-2
The real part of -2+2i is -2.