Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-4\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{-4}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{-4\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-4\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{-4\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
-2\left(\sqrt{5}-\sqrt{3}\right)
Divide -4\left(\sqrt{5}-\sqrt{3}\right) by 2 to get -2\left(\sqrt{5}-\sqrt{3}\right).
-2\sqrt{5}+2\sqrt{3}
Use the distributive property to multiply -2 by \sqrt{5}-\sqrt{3}.