Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(\frac{\left(-\frac{8+1}{2}\right)x\sqrt{5}+9}{\left(5\sqrt{5}+1\right)^{2}})
Multiply 4 and 2 to get 8.
factor(\frac{-\frac{9}{2}x\sqrt{5}+9}{\left(5\sqrt{5}+1\right)^{2}})
Add 8 and 1 to get 9.
factor(\frac{-\frac{9}{2}x\sqrt{5}+9}{25\left(\sqrt{5}\right)^{2}+10\sqrt{5}+1})
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5\sqrt{5}+1\right)^{2}.
factor(\frac{-\frac{9}{2}x\sqrt{5}+9}{25\times 5+10\sqrt{5}+1})
The square of \sqrt{5} is 5.
factor(\frac{-\frac{9}{2}x\sqrt{5}+9}{125+10\sqrt{5}+1})
Multiply 25 and 5 to get 125.
factor(\frac{-\frac{9}{2}x\sqrt{5}+9}{126+10\sqrt{5}})
Add 125 and 1 to get 126.
factor(\frac{\left(-\frac{9}{2}x\sqrt{5}+9\right)\left(126-10\sqrt{5}\right)}{\left(126+10\sqrt{5}\right)\left(126-10\sqrt{5}\right)})
Rationalize the denominator of \frac{-\frac{9}{2}x\sqrt{5}+9}{126+10\sqrt{5}} by multiplying numerator and denominator by 126-10\sqrt{5}.
factor(\frac{\left(-\frac{9}{2}x\sqrt{5}+9\right)\left(126-10\sqrt{5}\right)}{126^{2}-\left(10\sqrt{5}\right)^{2}})
Consider \left(126+10\sqrt{5}\right)\left(126-10\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
factor(\frac{\left(-\frac{9}{2}x\sqrt{5}+9\right)\left(126-10\sqrt{5}\right)}{15876-\left(10\sqrt{5}\right)^{2}})
Calculate 126 to the power of 2 and get 15876.
factor(\frac{\left(-\frac{9}{2}x\sqrt{5}+9\right)\left(126-10\sqrt{5}\right)}{15876-10^{2}\left(\sqrt{5}\right)^{2}})
Expand \left(10\sqrt{5}\right)^{2}.
factor(\frac{\left(-\frac{9}{2}x\sqrt{5}+9\right)\left(126-10\sqrt{5}\right)}{15876-100\left(\sqrt{5}\right)^{2}})
Calculate 10 to the power of 2 and get 100.
factor(\frac{\left(-\frac{9}{2}x\sqrt{5}+9\right)\left(126-10\sqrt{5}\right)}{15876-100\times 5})
The square of \sqrt{5} is 5.
factor(\frac{\left(-\frac{9}{2}x\sqrt{5}+9\right)\left(126-10\sqrt{5}\right)}{15876-500})
Multiply 100 and 5 to get 500.
factor(\frac{\left(-\frac{9}{2}x\sqrt{5}+9\right)\left(126-10\sqrt{5}\right)}{15376})
Subtract 500 from 15876 to get 15376.
factor(\frac{-567x\sqrt{5}+45x\left(\sqrt{5}\right)^{2}+1134-90\sqrt{5}}{15376})
Use the distributive property to multiply -\frac{9}{2}x\sqrt{5}+9 by 126-10\sqrt{5}.
factor(\frac{-567x\sqrt{5}+45x\times 5+1134-90\sqrt{5}}{15376})
The square of \sqrt{5} is 5.
factor(\frac{-567x\sqrt{5}+225x+1134-90\sqrt{5}}{15376})
Multiply 45 and 5 to get 225.
9\left(-63x\sqrt{5}+25x+126-10\sqrt{5}\right)
Consider -567x\times 5^{\frac{1}{2}}+225x+1134-90\times 5^{\frac{1}{2}}. Factor out 9.
\frac{9\left(-63x\sqrt{5}+25x+126-10\sqrt{5}\right)}{15376}
Rewrite the complete factored expression. Simplify.