Skip to main content
Solve for ξ
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

\frac{-4}{2+2i}+\frac{\xi }{2+2i}=y+i\sqrt{3}
Divide each term of -4+\xi by 2+2i to get \frac{-4}{2+2i}+\frac{\xi }{2+2i}.
\frac{-4\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)}+\frac{\xi }{2+2i}=y+i\sqrt{3}
Multiply both numerator and denominator of \frac{-4}{2+2i} by the complex conjugate of the denominator, 2-2i.
\frac{-8+8i}{8}+\frac{\xi }{2+2i}=y+i\sqrt{3}
Do the multiplications in \frac{-4\left(2-2i\right)}{\left(2+2i\right)\left(2-2i\right)}.
-1+i+\frac{\xi }{2+2i}=y+i\sqrt{3}
Divide -8+8i by 8 to get -1+i.
\frac{\xi }{2+2i}=y+i\sqrt{3}-\left(-1+i\right)
Subtract -1+i from both sides.
\frac{\xi }{2+2i}=y+i\sqrt{3}+\left(1-i\right)
Multiply -1 and -1+i to get 1-i.
\left(\frac{1}{4}-\frac{1}{4}i\right)\xi =y+\sqrt{3}i+\left(1-i\right)
The equation is in standard form.
\frac{\left(\frac{1}{4}-\frac{1}{4}i\right)\xi }{\frac{1}{4}-\frac{1}{4}i}=\frac{y+\sqrt{3}i+\left(1-i\right)}{\frac{1}{4}-\frac{1}{4}i}
Divide both sides by \frac{1}{4}-\frac{1}{4}i.
\xi =\frac{y+\sqrt{3}i+\left(1-i\right)}{\frac{1}{4}-\frac{1}{4}i}
Dividing by \frac{1}{4}-\frac{1}{4}i undoes the multiplication by \frac{1}{4}-\frac{1}{4}i.
\xi =\left(2+2i\right)y+\sqrt{3}\left(-2+2i\right)+4
Divide y+i\sqrt{3}+\left(1-i\right) by \frac{1}{4}-\frac{1}{4}i.