Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-4+20i\right)\left(-6-4i\right)}{\left(-6+4i\right)\left(-6-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -6-4i.
\frac{\left(-4+20i\right)\left(-6-4i\right)}{\left(-6\right)^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-4+20i\right)\left(-6-4i\right)}{52}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)i^{2}}{52}
Multiply complex numbers -4+20i and -6-4i like you multiply binomials.
\frac{-4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)\left(-1\right)}{52}
By definition, i^{2} is -1.
\frac{24+16i-120i+80}{52}
Do the multiplications in -4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)\left(-1\right).
\frac{24+80+\left(16-120\right)i}{52}
Combine the real and imaginary parts in 24+16i-120i+80.
\frac{104-104i}{52}
Do the additions in 24+80+\left(16-120\right)i.
2-2i
Divide 104-104i by 52 to get 2-2i.
Re(\frac{\left(-4+20i\right)\left(-6-4i\right)}{\left(-6+4i\right)\left(-6-4i\right)})
Multiply both numerator and denominator of \frac{-4+20i}{-6+4i} by the complex conjugate of the denominator, -6-4i.
Re(\frac{\left(-4+20i\right)\left(-6-4i\right)}{\left(-6\right)^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-4+20i\right)\left(-6-4i\right)}{52})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)i^{2}}{52})
Multiply complex numbers -4+20i and -6-4i like you multiply binomials.
Re(\frac{-4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)\left(-1\right)}{52})
By definition, i^{2} is -1.
Re(\frac{24+16i-120i+80}{52})
Do the multiplications in -4\left(-6\right)-4\times \left(-4i\right)+20i\left(-6\right)+20\left(-4\right)\left(-1\right).
Re(\frac{24+80+\left(16-120\right)i}{52})
Combine the real and imaginary parts in 24+16i-120i+80.
Re(\frac{104-104i}{52})
Do the additions in 24+80+\left(16-120\right)i.
Re(2-2i)
Divide 104-104i by 52 to get 2-2i.
2
The real part of 2-2i is 2.