Solve for x
x=24
Graph
Share
Copied to clipboard
\left(x-72\right)\left(-36\right)x=\left(x-72\right)\left(x-36\right)\times 36+\left(x-36\right)\left(-72\right)x
Variable x cannot be equal to any of the values 36,72 since division by zero is not defined. Multiply both sides of the equation by \left(x-72\right)\left(x-36\right), the least common multiple of -36+x,-72+x.
\left(-36x+2592\right)x=\left(x-72\right)\left(x-36\right)\times 36+\left(x-36\right)\left(-72\right)x
Use the distributive property to multiply x-72 by -36.
-36x^{2}+2592x=\left(x-72\right)\left(x-36\right)\times 36+\left(x-36\right)\left(-72\right)x
Use the distributive property to multiply -36x+2592 by x.
-36x^{2}+2592x=\left(x^{2}-108x+2592\right)\times 36+\left(x-36\right)\left(-72\right)x
Use the distributive property to multiply x-72 by x-36 and combine like terms.
-36x^{2}+2592x=36x^{2}-3888x+93312+\left(x-36\right)\left(-72\right)x
Use the distributive property to multiply x^{2}-108x+2592 by 36.
-36x^{2}+2592x=36x^{2}-3888x+93312+\left(-72x+2592\right)x
Use the distributive property to multiply x-36 by -72.
-36x^{2}+2592x=36x^{2}-3888x+93312-72x^{2}+2592x
Use the distributive property to multiply -72x+2592 by x.
-36x^{2}+2592x=-36x^{2}-3888x+93312+2592x
Combine 36x^{2} and -72x^{2} to get -36x^{2}.
-36x^{2}+2592x=-36x^{2}-1296x+93312
Combine -3888x and 2592x to get -1296x.
-36x^{2}+2592x+36x^{2}=-1296x+93312
Add 36x^{2} to both sides.
2592x=-1296x+93312
Combine -36x^{2} and 36x^{2} to get 0.
2592x+1296x=93312
Add 1296x to both sides.
3888x=93312
Combine 2592x and 1296x to get 3888x.
x=\frac{93312}{3888}
Divide both sides by 3888.
x=24
Divide 93312 by 3888 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}