Evaluate
-\frac{9a}{b}
Differentiate w.r.t. a
-\frac{9}{b}
Share
Copied to clipboard
\frac{\left(-36\right)^{1}a^{2}b^{2}}{4^{1}a^{1}b^{3}}
Use the rules of exponents to simplify the expression.
\frac{\left(-36\right)^{1}}{4^{1}}a^{2-1}b^{2-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-36\right)^{1}}{4^{1}}a^{1}b^{2-3}
Subtract 1 from 2.
\frac{\left(-36\right)^{1}}{4^{1}}a\times \frac{1}{b}
Subtract 3 from 2.
-9a\times \frac{1}{b}
Divide -36 by 4.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{36b^{2}}{4b^{3}}\right)a^{2-1})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{9}{b}\right)a^{1})
Do the arithmetic.
\left(-\frac{9}{b}\right)a^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-\frac{9}{b}\right)a^{0}
Do the arithmetic.
\left(-\frac{9}{b}\right)\times 1
For any term t except 0, t^{0}=1.
-\frac{9}{b}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}