Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-35\right)^{1}a^{10}b^{1}}{10^{1}a^{9}b^{1}}
Use the rules of exponents to simplify the expression.
\frac{\left(-35\right)^{1}}{10^{1}}a^{10-9}b^{1-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-35\right)^{1}}{10^{1}}a^{1}b^{1-1}
Subtract 9 from 10.
\frac{\left(-35\right)^{1}}{10^{1}}ab^{0}
Subtract 1 from 1.
\frac{\left(-35\right)^{1}}{10^{1}}a
For any number a except 0, a^{0}=1.
-\frac{7}{2}a
Reduce the fraction \frac{-35}{10} to lowest terms by extracting and canceling out 5.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{35b}{10b}\right)a^{10-9})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}a}(-\frac{7}{2}a^{1})
Do the arithmetic.
-\frac{7}{2}a^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-\frac{7}{2}a^{0}
Do the arithmetic.
-\frac{7}{2}
For any term t except 0, t^{0}=1.