Solve for x (complex solution)
x=\frac{4225+65\sqrt{4223}i}{16}\approx 264.0625+263.999992602i
x=\frac{-65\sqrt{4223}i+4225}{16}\approx 264.0625-263.999992602i
Graph
Share
Copied to clipboard
\frac{-32x^{2}}{16900}+x=264
Calculate 130 to the power of 2 and get 16900.
-\frac{8}{4225}x^{2}+x=264
Divide -32x^{2} by 16900 to get -\frac{8}{4225}x^{2}.
-\frac{8}{4225}x^{2}+x-264=0
Subtract 264 from both sides.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{8}{4225}\right)\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{8}{4225} for a, 1 for b, and -264 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-\frac{8}{4225}\right)\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
Square 1.
x=\frac{-1±\sqrt{1+\frac{32}{4225}\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
Multiply -4 times -\frac{8}{4225}.
x=\frac{-1±\sqrt{1-\frac{8448}{4225}}}{2\left(-\frac{8}{4225}\right)}
Multiply \frac{32}{4225} times -264.
x=\frac{-1±\sqrt{-\frac{4223}{4225}}}{2\left(-\frac{8}{4225}\right)}
Add 1 to -\frac{8448}{4225}.
x=\frac{-1±\frac{\sqrt{4223}i}{65}}{2\left(-\frac{8}{4225}\right)}
Take the square root of -\frac{4223}{4225}.
x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}}
Multiply 2 times -\frac{8}{4225}.
x=\frac{\frac{\sqrt{4223}i}{65}-1}{-\frac{16}{4225}}
Now solve the equation x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}} when ± is plus. Add -1 to \frac{i\sqrt{4223}}{65}.
x=\frac{-65\sqrt{4223}i+4225}{16}
Divide -1+\frac{i\sqrt{4223}}{65} by -\frac{16}{4225} by multiplying -1+\frac{i\sqrt{4223}}{65} by the reciprocal of -\frac{16}{4225}.
x=\frac{-\frac{\sqrt{4223}i}{65}-1}{-\frac{16}{4225}}
Now solve the equation x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}} when ± is minus. Subtract \frac{i\sqrt{4223}}{65} from -1.
x=\frac{4225+65\sqrt{4223}i}{16}
Divide -1-\frac{i\sqrt{4223}}{65} by -\frac{16}{4225} by multiplying -1-\frac{i\sqrt{4223}}{65} by the reciprocal of -\frac{16}{4225}.
x=\frac{-65\sqrt{4223}i+4225}{16} x=\frac{4225+65\sqrt{4223}i}{16}
The equation is now solved.
\frac{-32x^{2}}{16900}+x=264
Calculate 130 to the power of 2 and get 16900.
-\frac{8}{4225}x^{2}+x=264
Divide -32x^{2} by 16900 to get -\frac{8}{4225}x^{2}.
\frac{-\frac{8}{4225}x^{2}+x}{-\frac{8}{4225}}=\frac{264}{-\frac{8}{4225}}
Divide both sides of the equation by -\frac{8}{4225}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{1}{-\frac{8}{4225}}x=\frac{264}{-\frac{8}{4225}}
Dividing by -\frac{8}{4225} undoes the multiplication by -\frac{8}{4225}.
x^{2}-\frac{4225}{8}x=\frac{264}{-\frac{8}{4225}}
Divide 1 by -\frac{8}{4225} by multiplying 1 by the reciprocal of -\frac{8}{4225}.
x^{2}-\frac{4225}{8}x=-139425
Divide 264 by -\frac{8}{4225} by multiplying 264 by the reciprocal of -\frac{8}{4225}.
x^{2}-\frac{4225}{8}x+\left(-\frac{4225}{16}\right)^{2}=-139425+\left(-\frac{4225}{16}\right)^{2}
Divide -\frac{4225}{8}, the coefficient of the x term, by 2 to get -\frac{4225}{16}. Then add the square of -\frac{4225}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4225}{8}x+\frac{17850625}{256}=-139425+\frac{17850625}{256}
Square -\frac{4225}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4225}{8}x+\frac{17850625}{256}=-\frac{17842175}{256}
Add -139425 to \frac{17850625}{256}.
\left(x-\frac{4225}{16}\right)^{2}=-\frac{17842175}{256}
Factor x^{2}-\frac{4225}{8}x+\frac{17850625}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4225}{16}\right)^{2}}=\sqrt{-\frac{17842175}{256}}
Take the square root of both sides of the equation.
x-\frac{4225}{16}=\frac{65\sqrt{4223}i}{16} x-\frac{4225}{16}=-\frac{65\sqrt{4223}i}{16}
Simplify.
x=\frac{4225+65\sqrt{4223}i}{16} x=\frac{-65\sqrt{4223}i+4225}{16}
Add \frac{4225}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}