Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(-32a^{8}\right)^{1}\times \frac{1}{-4a^{3}}
Use the rules of exponents to simplify the expression.
\left(-32\right)^{1}\left(a^{8}\right)^{1}\times \frac{1}{-4}\times \frac{1}{a^{3}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(-32\right)^{1}\times \frac{1}{-4}\left(a^{8}\right)^{1}\times \frac{1}{a^{3}}
Use the Commutative Property of Multiplication.
\left(-32\right)^{1}\times \frac{1}{-4}a^{8}a^{3\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(-32\right)^{1}\times \frac{1}{-4}a^{8}a^{-3}
Multiply 3 times -1.
\left(-32\right)^{1}\times \frac{1}{-4}a^{8-3}
To multiply powers of the same base, add their exponents.
\left(-32\right)^{1}\times \frac{1}{-4}a^{5}
Add the exponents 8 and -3.
-32\times \frac{1}{-4}a^{5}
Raise -32 to the power 1.
-32\left(-\frac{1}{4}\right)a^{5}
Raise -4 to the power -1.
8a^{5}
Multiply -32 times -\frac{1}{4}.
\frac{\left(-32\right)^{1}a^{8}}{\left(-4\right)^{1}a^{3}}
Use the rules of exponents to simplify the expression.
\frac{\left(-32\right)^{1}a^{8-3}}{\left(-4\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(-32\right)^{1}a^{5}}{\left(-4\right)^{1}}
Subtract 3 from 8.
8a^{5}
Divide -32 by -4.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{32}{-4}\right)a^{8-3})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}a}(8a^{5})
Do the arithmetic.
5\times 8a^{5-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
40a^{4}
Do the arithmetic.