Solve for y
y=-\frac{5}{21}\approx -0.238095238
Graph
Share
Copied to clipboard
3\left(-3y-2\right)=-\left(-12y+1\right)
Multiply both sides of the equation by 6, the least common multiple of 2,-6.
-9y-6=-\left(-12y+1\right)
Use the distributive property to multiply 3 by -3y-2.
-9y-6=-\left(-12y\right)-1
To find the opposite of -12y+1, find the opposite of each term.
-9y-6=12y-1
The opposite of -12y is 12y.
-9y-6-12y=-1
Subtract 12y from both sides.
-21y-6=-1
Combine -9y and -12y to get -21y.
-21y=-1+6
Add 6 to both sides.
-21y=5
Add -1 and 6 to get 5.
y=\frac{5}{-21}
Divide both sides by -21.
y=-\frac{5}{21}
Fraction \frac{5}{-21} can be rewritten as -\frac{5}{21} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}