Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+4\right)\left(-3x+9\right)=\left(x-1\right)\times 4-\left(2+x\right)\left(4+x\right)\times 4
Variable x cannot be equal to any of the values -4,-2,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+2\right)\left(x+4\right), the least common multiple of x^{2}+x-2,x^{2}+6x+8,1-x.
-3x^{2}-3x+36=\left(x-1\right)\times 4-\left(2+x\right)\left(4+x\right)\times 4
Use the distributive property to multiply x+4 by -3x+9 and combine like terms.
-3x^{2}-3x+36=4x-4-\left(2+x\right)\left(4+x\right)\times 4
Use the distributive property to multiply x-1 by 4.
-3x^{2}-3x+36=4x-4-4\left(2+x\right)\left(4+x\right)
Multiply -1 and 4 to get -4.
-3x^{2}-3x+36=4x-4+\left(-8-4x\right)\left(4+x\right)
Use the distributive property to multiply -4 by 2+x.
-3x^{2}-3x+36=4x-4-32-24x-4x^{2}
Use the distributive property to multiply -8-4x by 4+x and combine like terms.
-3x^{2}-3x+36=4x-36-24x-4x^{2}
Subtract 32 from -4 to get -36.
-3x^{2}-3x+36=-20x-36-4x^{2}
Combine 4x and -24x to get -20x.
-3x^{2}-3x+36+20x=-36-4x^{2}
Add 20x to both sides.
-3x^{2}+17x+36=-36-4x^{2}
Combine -3x and 20x to get 17x.
-3x^{2}+17x+36-\left(-36\right)=-4x^{2}
Subtract -36 from both sides.
-3x^{2}+17x+36+36=-4x^{2}
The opposite of -36 is 36.
-3x^{2}+17x+2\times 36=-4x^{2}
Combine 36 and 36 to get 2\times 36.
-3x^{2}+17x+2\times 36+4x^{2}=0
Add 4x^{2} to both sides.
-3x^{2}+17x+72+4x^{2}=0
Multiply 2 and 36 to get 72.
x^{2}+17x+72=0
Combine -3x^{2} and 4x^{2} to get x^{2}.
a+b=17 ab=72
To solve the equation, factor x^{2}+17x+72 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,72 2,36 3,24 4,18 6,12 8,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 72.
1+72=73 2+36=38 3+24=27 4+18=22 6+12=18 8+9=17
Calculate the sum for each pair.
a=8 b=9
The solution is the pair that gives sum 17.
\left(x+8\right)\left(x+9\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=-8 x=-9
To find equation solutions, solve x+8=0 and x+9=0.
\left(x+4\right)\left(-3x+9\right)=\left(x-1\right)\times 4-\left(2+x\right)\left(4+x\right)\times 4
Variable x cannot be equal to any of the values -4,-2,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+2\right)\left(x+4\right), the least common multiple of x^{2}+x-2,x^{2}+6x+8,1-x.
-3x^{2}-3x+36=\left(x-1\right)\times 4-\left(2+x\right)\left(4+x\right)\times 4
Use the distributive property to multiply x+4 by -3x+9 and combine like terms.
-3x^{2}-3x+36=4x-4-\left(2+x\right)\left(4+x\right)\times 4
Use the distributive property to multiply x-1 by 4.
-3x^{2}-3x+36=4x-4-4\left(2+x\right)\left(4+x\right)
Multiply -1 and 4 to get -4.
-3x^{2}-3x+36=4x-4+\left(-8-4x\right)\left(4+x\right)
Use the distributive property to multiply -4 by 2+x.
-3x^{2}-3x+36=4x-4-32-24x-4x^{2}
Use the distributive property to multiply -8-4x by 4+x and combine like terms.
-3x^{2}-3x+36=4x-36-24x-4x^{2}
Subtract 32 from -4 to get -36.
-3x^{2}-3x+36=-20x-36-4x^{2}
Combine 4x and -24x to get -20x.
-3x^{2}-3x+36+20x=-36-4x^{2}
Add 20x to both sides.
-3x^{2}+17x+36=-36-4x^{2}
Combine -3x and 20x to get 17x.
-3x^{2}+17x+36-\left(-36\right)=-4x^{2}
Subtract -36 from both sides.
-3x^{2}+17x+36+36=-4x^{2}
The opposite of -36 is 36.
-3x^{2}+17x+2\times 36=-4x^{2}
Combine 36 and 36 to get 2\times 36.
-3x^{2}+17x+2\times 36+4x^{2}=0
Add 4x^{2} to both sides.
-3x^{2}+17x+72+4x^{2}=0
Multiply 2 and 36 to get 72.
x^{2}+17x+72=0
Combine -3x^{2} and 4x^{2} to get x^{2}.
a+b=17 ab=1\times 72=72
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+72. To find a and b, set up a system to be solved.
1,72 2,36 3,24 4,18 6,12 8,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 72.
1+72=73 2+36=38 3+24=27 4+18=22 6+12=18 8+9=17
Calculate the sum for each pair.
a=8 b=9
The solution is the pair that gives sum 17.
\left(x^{2}+8x\right)+\left(9x+72\right)
Rewrite x^{2}+17x+72 as \left(x^{2}+8x\right)+\left(9x+72\right).
x\left(x+8\right)+9\left(x+8\right)
Factor out x in the first and 9 in the second group.
\left(x+8\right)\left(x+9\right)
Factor out common term x+8 by using distributive property.
x=-8 x=-9
To find equation solutions, solve x+8=0 and x+9=0.
\left(x+4\right)\left(-3x+9\right)=\left(x-1\right)\times 4-\left(2+x\right)\left(4+x\right)\times 4
Variable x cannot be equal to any of the values -4,-2,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+2\right)\left(x+4\right), the least common multiple of x^{2}+x-2,x^{2}+6x+8,1-x.
-3x^{2}-3x+36=\left(x-1\right)\times 4-\left(2+x\right)\left(4+x\right)\times 4
Use the distributive property to multiply x+4 by -3x+9 and combine like terms.
-3x^{2}-3x+36=4x-4-\left(2+x\right)\left(4+x\right)\times 4
Use the distributive property to multiply x-1 by 4.
-3x^{2}-3x+36=4x-4-4\left(2+x\right)\left(4+x\right)
Multiply -1 and 4 to get -4.
-3x^{2}-3x+36=4x-4+\left(-8-4x\right)\left(4+x\right)
Use the distributive property to multiply -4 by 2+x.
-3x^{2}-3x+36=4x-4-32-24x-4x^{2}
Use the distributive property to multiply -8-4x by 4+x and combine like terms.
-3x^{2}-3x+36=4x-36-24x-4x^{2}
Subtract 32 from -4 to get -36.
-3x^{2}-3x+36=-20x-36-4x^{2}
Combine 4x and -24x to get -20x.
-3x^{2}-3x+36+20x=-36-4x^{2}
Add 20x to both sides.
-3x^{2}+17x+36=-36-4x^{2}
Combine -3x and 20x to get 17x.
-3x^{2}+17x+36-\left(-36\right)=-4x^{2}
Subtract -36 from both sides.
-3x^{2}+17x+36+36=-4x^{2}
The opposite of -36 is 36.
-3x^{2}+17x+2\times 36=-4x^{2}
Combine 36 and 36 to get 2\times 36.
-3x^{2}+17x+2\times 36+4x^{2}=0
Add 4x^{2} to both sides.
-3x^{2}+17x+72+4x^{2}=0
Multiply 2 and 36 to get 72.
x^{2}+17x+72=0
Combine -3x^{2} and 4x^{2} to get x^{2}.
x=\frac{-17±\sqrt{17^{2}-4\times 72}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 17 for b, and 72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 72}}{2}
Square 17.
x=\frac{-17±\sqrt{289-288}}{2}
Multiply -4 times 72.
x=\frac{-17±\sqrt{1}}{2}
Add 289 to -288.
x=\frac{-17±1}{2}
Take the square root of 1.
x=-\frac{16}{2}
Now solve the equation x=\frac{-17±1}{2} when ± is plus. Add -17 to 1.
x=-8
Divide -16 by 2.
x=-\frac{18}{2}
Now solve the equation x=\frac{-17±1}{2} when ± is minus. Subtract 1 from -17.
x=-9
Divide -18 by 2.
x=-8 x=-9
The equation is now solved.
\left(x+4\right)\left(-3x+9\right)=\left(x-1\right)\times 4-\left(2+x\right)\left(4+x\right)\times 4
Variable x cannot be equal to any of the values -4,-2,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+2\right)\left(x+4\right), the least common multiple of x^{2}+x-2,x^{2}+6x+8,1-x.
-3x^{2}-3x+36=\left(x-1\right)\times 4-\left(2+x\right)\left(4+x\right)\times 4
Use the distributive property to multiply x+4 by -3x+9 and combine like terms.
-3x^{2}-3x+36=4x-4-\left(2+x\right)\left(4+x\right)\times 4
Use the distributive property to multiply x-1 by 4.
-3x^{2}-3x+36=4x-4-4\left(2+x\right)\left(4+x\right)
Multiply -1 and 4 to get -4.
-3x^{2}-3x+36=4x-4+\left(-8-4x\right)\left(4+x\right)
Use the distributive property to multiply -4 by 2+x.
-3x^{2}-3x+36=4x-4-32-24x-4x^{2}
Use the distributive property to multiply -8-4x by 4+x and combine like terms.
-3x^{2}-3x+36=4x-36-24x-4x^{2}
Subtract 32 from -4 to get -36.
-3x^{2}-3x+36=-20x-36-4x^{2}
Combine 4x and -24x to get -20x.
-3x^{2}-3x+36+20x=-36-4x^{2}
Add 20x to both sides.
-3x^{2}+17x+36=-36-4x^{2}
Combine -3x and 20x to get 17x.
-3x^{2}+17x+36+4x^{2}=-36
Add 4x^{2} to both sides.
x^{2}+17x+36=-36
Combine -3x^{2} and 4x^{2} to get x^{2}.
x^{2}+17x=-36-36
Subtract 36 from both sides.
x^{2}+17x=-72
Subtract 36 from -36 to get -72.
x^{2}+17x+\left(\frac{17}{2}\right)^{2}=-72+\left(\frac{17}{2}\right)^{2}
Divide 17, the coefficient of the x term, by 2 to get \frac{17}{2}. Then add the square of \frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+17x+\frac{289}{4}=-72+\frac{289}{4}
Square \frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+17x+\frac{289}{4}=\frac{1}{4}
Add -72 to \frac{289}{4}.
\left(x+\frac{17}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}+17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x+\frac{17}{2}=\frac{1}{2} x+\frac{17}{2}=-\frac{1}{2}
Simplify.
x=-8 x=-9
Subtract \frac{17}{2} from both sides of the equation.