Solve for n
n\neq 0
Share
Copied to clipboard
-3n^{2}+6n=3n\times 2-n\times 3n
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3n.
-3n^{2}+6n=3n\times 2-n^{2}\times 3
Multiply n and n to get n^{2}.
-3n^{2}+6n=6n-n^{2}\times 3
Multiply 3 and 2 to get 6.
-3n^{2}+6n=6n-3n^{2}
Multiply -1 and 3 to get -3.
-3n^{2}+6n-6n=-3n^{2}
Subtract 6n from both sides.
-3n^{2}=-3n^{2}
Combine 6n and -6n to get 0.
-3n^{2}+3n^{2}=0
Add 3n^{2} to both sides.
0=0
Combine -3n^{2} and 3n^{2} to get 0.
\text{true}
Compare 0 and 0.
n\in \mathrm{R}
This is true for any n.
n\in \mathrm{R}\setminus 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}