Solve for m
m=-\frac{k\left(3k^{2}+1\right)}{1-3k+3k^{2}-3k^{3}}
k\neq \frac{\sqrt[3]{4}+1-\sqrt[3]{2}}{3}
Share
Copied to clipboard
\left(k^{2}+1\right)\left(-3\right)km=\left(3k^{2}+1\right)\left(-k-m\right)
Multiply both sides of the equation by \left(3k^{2}+1\right)\left(k^{2}+1\right), the least common multiple of 1+3k^{2},k^{2}+1.
\left(-3k^{2}-3\right)km=\left(3k^{2}+1\right)\left(-k-m\right)
Use the distributive property to multiply k^{2}+1 by -3.
\left(-3k^{3}-3k\right)m=\left(3k^{2}+1\right)\left(-k-m\right)
Use the distributive property to multiply -3k^{2}-3 by k.
-3k^{3}m-3km=\left(3k^{2}+1\right)\left(-k-m\right)
Use the distributive property to multiply -3k^{3}-3k by m.
-3k^{3}m-3km=3k^{2}\left(-k\right)-3k^{2}m-k-m
Use the distributive property to multiply 3k^{2}+1 by -k-m.
-3k^{3}m-3km+3k^{2}m=3k^{2}\left(-k\right)-k-m
Add 3k^{2}m to both sides.
-3k^{3}m-3km+3k^{2}m+m=3k^{2}\left(-k\right)-k
Add m to both sides.
-3k^{3}m-3km+3k^{2}m+m=3k^{3}\left(-1\right)-k
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-3k^{3}m-3km+3k^{2}m+m=-3k^{3}-k
Multiply 3 and -1 to get -3.
\left(-3k^{3}-3k+3k^{2}+1\right)m=-3k^{3}-k
Combine all terms containing m.
\left(1-3k+3k^{2}-3k^{3}\right)m=-3k^{3}-k
The equation is in standard form.
\frac{\left(1-3k+3k^{2}-3k^{3}\right)m}{1-3k+3k^{2}-3k^{3}}=-\frac{k\left(3k^{2}+1\right)}{1-3k+3k^{2}-3k^{3}}
Divide both sides by -3k^{3}+3k^{2}-3k+1.
m=-\frac{k\left(3k^{2}+1\right)}{1-3k+3k^{2}-3k^{3}}
Dividing by -3k^{3}+3k^{2}-3k+1 undoes the multiplication by -3k^{3}+3k^{2}-3k+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}