Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

\left(k^{2}+1\right)\left(-3\right)km=\left(3k^{2}+1\right)\left(-k-m\right)
Multiply both sides of the equation by \left(3k^{2}+1\right)\left(k^{2}+1\right), the least common multiple of 1+3k^{2},k^{2}+1.
\left(-3k^{2}-3\right)km=\left(3k^{2}+1\right)\left(-k-m\right)
Use the distributive property to multiply k^{2}+1 by -3.
\left(-3k^{3}-3k\right)m=\left(3k^{2}+1\right)\left(-k-m\right)
Use the distributive property to multiply -3k^{2}-3 by k.
-3k^{3}m-3km=\left(3k^{2}+1\right)\left(-k-m\right)
Use the distributive property to multiply -3k^{3}-3k by m.
-3k^{3}m-3km=3k^{2}\left(-k\right)-3k^{2}m-k-m
Use the distributive property to multiply 3k^{2}+1 by -k-m.
-3k^{3}m-3km+3k^{2}m=3k^{2}\left(-k\right)-k-m
Add 3k^{2}m to both sides.
-3k^{3}m-3km+3k^{2}m+m=3k^{2}\left(-k\right)-k
Add m to both sides.
-3k^{3}m-3km+3k^{2}m+m=3k^{3}\left(-1\right)-k
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-3k^{3}m-3km+3k^{2}m+m=-3k^{3}-k
Multiply 3 and -1 to get -3.
\left(-3k^{3}-3k+3k^{2}+1\right)m=-3k^{3}-k
Combine all terms containing m.
\left(1-3k+3k^{2}-3k^{3}\right)m=-3k^{3}-k
The equation is in standard form.
\frac{\left(1-3k+3k^{2}-3k^{3}\right)m}{1-3k+3k^{2}-3k^{3}}=-\frac{k\left(3k^{2}+1\right)}{1-3k+3k^{2}-3k^{3}}
Divide both sides by -3k^{3}+3k^{2}-3k+1.
m=-\frac{k\left(3k^{2}+1\right)}{1-3k+3k^{2}-3k^{3}}
Dividing by -3k^{3}+3k^{2}-3k+1 undoes the multiplication by -3k^{3}+3k^{2}-3k+1.