Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{-3i\left(-2+5i\right)}{\left(-2-5i\right)\left(-2+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -2+5i.
\frac{-3i\left(-2+5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-3i\left(-2+5i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-3i\left(-2\right)-3\times 5i^{2}}{29}
Multiply -3i times -2+5i.
\frac{-3i\left(-2\right)-3\times 5\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{15+6i}{29}
Do the multiplications in -3i\left(-2\right)-3\times 5\left(-1\right). Reorder the terms.
\frac{15}{29}+\frac{6}{29}i
Divide 15+6i by 29 to get \frac{15}{29}+\frac{6}{29}i.
Re(\frac{-3i\left(-2+5i\right)}{\left(-2-5i\right)\left(-2+5i\right)})
Multiply both numerator and denominator of \frac{-3i}{-2-5i} by the complex conjugate of the denominator, -2+5i.
Re(\frac{-3i\left(-2+5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{-3i\left(-2+5i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-3i\left(-2\right)-3\times 5i^{2}}{29})
Multiply -3i times -2+5i.
Re(\frac{-3i\left(-2\right)-3\times 5\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{15+6i}{29})
Do the multiplications in -3i\left(-2\right)-3\times 5\left(-1\right). Reorder the terms.
Re(\frac{15}{29}+\frac{6}{29}i)
Divide 15+6i by 29 to get \frac{15}{29}+\frac{6}{29}i.
\frac{15}{29}
The real part of \frac{15}{29}+\frac{6}{29}i is \frac{15}{29}.