Evaluate
-\frac{11}{5}+\frac{13}{5}i=-2.2+2.6i
Real Part
-\frac{11}{5} = -2\frac{1}{5} = -2.2
Share
Copied to clipboard
\frac{-3-7i}{-1+2i}\times 1
Divide 1-2i by 1-2i to get 1.
\frac{\left(-3-7i\right)\left(-1-2i\right)}{\left(-1+2i\right)\left(-1-2i\right)}\times 1
Multiply both numerator and denominator of \frac{-3-7i}{-1+2i} by the complex conjugate of the denominator, -1-2i.
\frac{-11+13i}{5}\times 1
Do the multiplications in \frac{\left(-3-7i\right)\left(-1-2i\right)}{\left(-1+2i\right)\left(-1-2i\right)}.
\left(-\frac{11}{5}+\frac{13}{5}i\right)\times 1
Divide -11+13i by 5 to get -\frac{11}{5}+\frac{13}{5}i.
-\frac{11}{5}+\frac{13}{5}i
Multiply -\frac{11}{5}+\frac{13}{5}i and 1 to get -\frac{11}{5}+\frac{13}{5}i.
Re(\frac{-3-7i}{-1+2i}\times 1)
Divide 1-2i by 1-2i to get 1.
Re(\frac{\left(-3-7i\right)\left(-1-2i\right)}{\left(-1+2i\right)\left(-1-2i\right)}\times 1)
Multiply both numerator and denominator of \frac{-3-7i}{-1+2i} by the complex conjugate of the denominator, -1-2i.
Re(\frac{-11+13i}{5}\times 1)
Do the multiplications in \frac{\left(-3-7i\right)\left(-1-2i\right)}{\left(-1+2i\right)\left(-1-2i\right)}.
Re(\left(-\frac{11}{5}+\frac{13}{5}i\right)\times 1)
Divide -11+13i by 5 to get -\frac{11}{5}+\frac{13}{5}i.
Re(-\frac{11}{5}+\frac{13}{5}i)
Multiply -\frac{11}{5}+\frac{13}{5}i and 1 to get -\frac{11}{5}+\frac{13}{5}i.
-\frac{11}{5}
The real part of -\frac{11}{5}+\frac{13}{5}i is -\frac{11}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}