Solve for m
m\geq -\frac{3}{4}
Share
Copied to clipboard
-3-2m\leq -\frac{1}{2}\times 3
Multiply both sides by 3. Since 3 is positive, the inequality direction remains the same.
-3-2m\leq \frac{-3}{2}
Express -\frac{1}{2}\times 3 as a single fraction.
-3-2m\leq -\frac{3}{2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
-2m\leq -\frac{3}{2}+3
Add 3 to both sides.
-2m\leq -\frac{3}{2}+\frac{6}{2}
Convert 3 to fraction \frac{6}{2}.
-2m\leq \frac{-3+6}{2}
Since -\frac{3}{2} and \frac{6}{2} have the same denominator, add them by adding their numerators.
-2m\leq \frac{3}{2}
Add -3 and 6 to get 3.
m\geq \frac{\frac{3}{2}}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
m\geq \frac{3}{2\left(-2\right)}
Express \frac{\frac{3}{2}}{-2} as a single fraction.
m\geq \frac{3}{-4}
Multiply 2 and -2 to get -4.
m\geq -\frac{3}{4}
Fraction \frac{3}{-4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}