Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-3-2i\right)\left(5-2i\right)}{\left(5+2i\right)\left(5-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5-2i.
\frac{\left(-3-2i\right)\left(5-2i\right)}{5^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-3-2i\right)\left(5-2i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-3\times 5-3\times \left(-2i\right)-2i\times 5-2\left(-2\right)i^{2}}{29}
Multiply complex numbers -3-2i and 5-2i like you multiply binomials.
\frac{-3\times 5-3\times \left(-2i\right)-2i\times 5-2\left(-2\right)\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{-15+6i-10i-4}{29}
Do the multiplications in -3\times 5-3\times \left(-2i\right)-2i\times 5-2\left(-2\right)\left(-1\right).
\frac{-15-4+\left(6-10\right)i}{29}
Combine the real and imaginary parts in -15+6i-10i-4.
\frac{-19-4i}{29}
Do the additions in -15-4+\left(6-10\right)i.
-\frac{19}{29}-\frac{4}{29}i
Divide -19-4i by 29 to get -\frac{19}{29}-\frac{4}{29}i.
Re(\frac{\left(-3-2i\right)\left(5-2i\right)}{\left(5+2i\right)\left(5-2i\right)})
Multiply both numerator and denominator of \frac{-3-2i}{5+2i} by the complex conjugate of the denominator, 5-2i.
Re(\frac{\left(-3-2i\right)\left(5-2i\right)}{5^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-3-2i\right)\left(5-2i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-3\times 5-3\times \left(-2i\right)-2i\times 5-2\left(-2\right)i^{2}}{29})
Multiply complex numbers -3-2i and 5-2i like you multiply binomials.
Re(\frac{-3\times 5-3\times \left(-2i\right)-2i\times 5-2\left(-2\right)\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{-15+6i-10i-4}{29})
Do the multiplications in -3\times 5-3\times \left(-2i\right)-2i\times 5-2\left(-2\right)\left(-1\right).
Re(\frac{-15-4+\left(6-10\right)i}{29})
Combine the real and imaginary parts in -15+6i-10i-4.
Re(\frac{-19-4i}{29})
Do the additions in -15-4+\left(6-10\right)i.
Re(-\frac{19}{29}-\frac{4}{29}i)
Divide -19-4i by 29 to get -\frac{19}{29}-\frac{4}{29}i.
-\frac{19}{29}
The real part of -\frac{19}{29}-\frac{4}{29}i is -\frac{19}{29}.