Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-3-2\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right)}{\left(-7-6\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right)}
Rationalize the denominator of \frac{-3-2\sqrt{-1}}{-7-6\sqrt{-1}} by multiplying numerator and denominator by -7+6\sqrt{-1}.
\frac{\left(-3-2\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right)}{\left(-7\right)^{2}-\left(-6\sqrt{-1}\right)^{2}}
Consider \left(-7-6\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-3-2\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right)}{49-\left(-6\sqrt{-1}\right)^{2}}
Calculate -7 to the power of 2 and get 49.
\frac{\left(-3-2\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right)}{49-\left(-6\right)^{2}\left(\sqrt{-1}\right)^{2}}
Expand \left(-6\sqrt{-1}\right)^{2}.
\frac{\left(-3-2\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right)}{49-36\left(\sqrt{-1}\right)^{2}}
Calculate -6 to the power of 2 and get 36.
\frac{\left(-3-2\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right)}{49-36\left(-1\right)}
Calculate \sqrt{-1} to the power of 2 and get -1.
\frac{\left(-3-2\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right)}{49-\left(-36\right)}
Multiply 36 and -1 to get -36.
\frac{\left(-3-2\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right)}{49+36}
Multiply -1 and -36 to get 36.
\frac{\left(-3-2\sqrt{-1}\right)\left(-7+6\sqrt{-1}\right)}{85}
Add 49 and 36 to get 85.
\frac{21-18\sqrt{-1}+14\sqrt{-1}-12\left(\sqrt{-1}\right)^{2}}{85}
Apply the distributive property by multiplying each term of -3-2\sqrt{-1} by each term of -7+6\sqrt{-1}.
\frac{21-4\sqrt{-1}-12\left(\sqrt{-1}\right)^{2}}{85}
Combine -18\sqrt{-1} and 14\sqrt{-1} to get -4\sqrt{-1}.
\frac{21-4\sqrt{-1}-12\left(-1\right)}{85}
Calculate \sqrt{-1} to the power of 2 and get -1.
\frac{21-4\sqrt{-1}+12}{85}
Multiply -12 and -1 to get 12.
\frac{33-4\sqrt{-1}}{85}
Add 21 and 12 to get 33.