Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{\left(2+3i\sqrt{5}\right)\left(2-3i\sqrt{5}\right)}
Rationalize the denominator of \frac{-3\sqrt{5}+2i}{2+3i\sqrt{5}} by multiplying numerator and denominator by 2-3i\sqrt{5}.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{2^{2}-\left(3i\sqrt{5}\right)^{2}}
Consider \left(2+3i\sqrt{5}\right)\left(2-3i\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(3i\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(3i\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3i\sqrt{5}\right)^{2}.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-9\left(\sqrt{5}\right)^{2}\right)}
Calculate 3i to the power of 2 and get -9.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-9\times 5\right)}
The square of \sqrt{5} is 5.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-45\right)}
Multiply -9 and 5 to get -45.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4+45}
Multiply -1 and -45 to get 45.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{49}
Add 4 and 45 to get 49.
\frac{-6\sqrt{5}+9i\left(\sqrt{5}\right)^{2}+4i+6\sqrt{5}}{49}
Apply the distributive property by multiplying each term of -3\sqrt{5}+2i by each term of 2-3i\sqrt{5}.
\frac{-6\sqrt{5}+9i\times 5+4i+6\sqrt{5}}{49}
The square of \sqrt{5} is 5.
\frac{-6\sqrt{5}+45i+4i+6\sqrt{5}}{49}
Multiply 9i and 5 to get 45i.
\frac{-6\sqrt{5}+49i+6\sqrt{5}}{49}
Add 45i and 4i to get 49i.
\frac{49i}{49}
Combine -6\sqrt{5} and 6\sqrt{5} to get 0.
i
Divide 49i by 49 to get i.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{\left(2+3i\sqrt{5}\right)\left(2-3i\sqrt{5}\right)})
Rationalize the denominator of \frac{-3\sqrt{5}+2i}{2+3i\sqrt{5}} by multiplying numerator and denominator by 2-3i\sqrt{5}.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{2^{2}-\left(3i\sqrt{5}\right)^{2}})
Consider \left(2+3i\sqrt{5}\right)\left(2-3i\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(3i\sqrt{5}\right)^{2}})
Calculate 2 to the power of 2 and get 4.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(3i\right)^{2}\left(\sqrt{5}\right)^{2}})
Expand \left(3i\sqrt{5}\right)^{2}.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-9\left(\sqrt{5}\right)^{2}\right)})
Calculate 3i to the power of 2 and get -9.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-9\times 5\right)})
The square of \sqrt{5} is 5.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-45\right)})
Multiply -9 and 5 to get -45.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4+45})
Multiply -1 and -45 to get 45.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{49})
Add 4 and 45 to get 49.
Re(\frac{-6\sqrt{5}+9i\left(\sqrt{5}\right)^{2}+4i+6\sqrt{5}}{49})
Apply the distributive property by multiplying each term of -3\sqrt{5}+2i by each term of 2-3i\sqrt{5}.
Re(\frac{-6\sqrt{5}+9i\times 5+4i+6\sqrt{5}}{49})
The square of \sqrt{5} is 5.
Re(\frac{-6\sqrt{5}+45i+4i+6\sqrt{5}}{49})
Multiply 9i and 5 to get 45i.
Re(\frac{-6\sqrt{5}+49i+6\sqrt{5}}{49})
Add 45i and 4i to get 49i.
Re(\frac{49i}{49})
Combine -6\sqrt{5} and 6\sqrt{5} to get 0.
Re(i)
Divide 49i by 49 to get i.
0
The real part of i is 0.