Evaluate
i
Real Part
0
Share
Copied to clipboard
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{\left(2+3i\sqrt{5}\right)\left(2-3i\sqrt{5}\right)}
Rationalize the denominator of \frac{-3\sqrt{5}+2i}{2+3i\sqrt{5}} by multiplying numerator and denominator by 2-3i\sqrt{5}.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{2^{2}-\left(3i\sqrt{5}\right)^{2}}
Consider \left(2+3i\sqrt{5}\right)\left(2-3i\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(3i\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(3i\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3i\sqrt{5}\right)^{2}.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-9\left(\sqrt{5}\right)^{2}\right)}
Calculate 3i to the power of 2 and get -9.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-9\times 5\right)}
The square of \sqrt{5} is 5.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-45\right)}
Multiply -9 and 5 to get -45.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4+45}
Multiply -1 and -45 to get 45.
\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{49}
Add 4 and 45 to get 49.
\frac{-6\sqrt{5}+9i\left(\sqrt{5}\right)^{2}+4i+6\sqrt{5}}{49}
Apply the distributive property by multiplying each term of -3\sqrt{5}+2i by each term of 2-3i\sqrt{5}.
\frac{-6\sqrt{5}+9i\times 5+4i+6\sqrt{5}}{49}
The square of \sqrt{5} is 5.
\frac{-6\sqrt{5}+45i+4i+6\sqrt{5}}{49}
Multiply 9i and 5 to get 45i.
\frac{-6\sqrt{5}+49i+6\sqrt{5}}{49}
Add 45i and 4i to get 49i.
\frac{49i}{49}
Combine -6\sqrt{5} and 6\sqrt{5} to get 0.
i
Divide 49i by 49 to get i.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{\left(2+3i\sqrt{5}\right)\left(2-3i\sqrt{5}\right)})
Rationalize the denominator of \frac{-3\sqrt{5}+2i}{2+3i\sqrt{5}} by multiplying numerator and denominator by 2-3i\sqrt{5}.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{2^{2}-\left(3i\sqrt{5}\right)^{2}})
Consider \left(2+3i\sqrt{5}\right)\left(2-3i\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(3i\sqrt{5}\right)^{2}})
Calculate 2 to the power of 2 and get 4.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(3i\right)^{2}\left(\sqrt{5}\right)^{2}})
Expand \left(3i\sqrt{5}\right)^{2}.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-9\left(\sqrt{5}\right)^{2}\right)})
Calculate 3i to the power of 2 and get -9.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-9\times 5\right)})
The square of \sqrt{5} is 5.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4-\left(-45\right)})
Multiply -9 and 5 to get -45.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{4+45})
Multiply -1 and -45 to get 45.
Re(\frac{\left(-3\sqrt{5}+2i\right)\left(2-3i\sqrt{5}\right)}{49})
Add 4 and 45 to get 49.
Re(\frac{-6\sqrt{5}+9i\left(\sqrt{5}\right)^{2}+4i+6\sqrt{5}}{49})
Apply the distributive property by multiplying each term of -3\sqrt{5}+2i by each term of 2-3i\sqrt{5}.
Re(\frac{-6\sqrt{5}+9i\times 5+4i+6\sqrt{5}}{49})
The square of \sqrt{5} is 5.
Re(\frac{-6\sqrt{5}+45i+4i+6\sqrt{5}}{49})
Multiply 9i and 5 to get 45i.
Re(\frac{-6\sqrt{5}+49i+6\sqrt{5}}{49})
Add 45i and 4i to get 49i.
Re(\frac{49i}{49})
Combine -6\sqrt{5} and 6\sqrt{5} to get 0.
Re(i)
Divide 49i by 49 to get i.
0
The real part of i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}