Evaluate
\frac{3}{5}+\frac{21}{5}i=0.6+4.2i
Real Part
\frac{3}{5} = 0.6
Share
Copied to clipboard
\frac{\left(-3+9i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-i.
\frac{\left(-3+9i\right)\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-3+9i\right)\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)i^{2}}{5}
Multiply complex numbers -3+9i and 2-i like you multiply binomials.
\frac{-3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{-6+3i+18i+9}{5}
Do the multiplications in -3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)\left(-1\right).
\frac{-6+9+\left(3+18\right)i}{5}
Combine the real and imaginary parts in -6+3i+18i+9.
\frac{3+21i}{5}
Do the additions in -6+9+\left(3+18\right)i.
\frac{3}{5}+\frac{21}{5}i
Divide 3+21i by 5 to get \frac{3}{5}+\frac{21}{5}i.
Re(\frac{\left(-3+9i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{-3+9i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{\left(-3+9i\right)\left(2-i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-3+9i\right)\left(2-i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)i^{2}}{5})
Multiply complex numbers -3+9i and 2-i like you multiply binomials.
Re(\frac{-3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{-6+3i+18i+9}{5})
Do the multiplications in -3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)\left(-1\right).
Re(\frac{-6+9+\left(3+18\right)i}{5})
Combine the real and imaginary parts in -6+3i+18i+9.
Re(\frac{3+21i}{5})
Do the additions in -6+9+\left(3+18\right)i.
Re(\frac{3}{5}+\frac{21}{5}i)
Divide 3+21i by 5 to get \frac{3}{5}+\frac{21}{5}i.
\frac{3}{5}
The real part of \frac{3}{5}+\frac{21}{5}i is \frac{3}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}