Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-3+9i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-i.
\frac{\left(-3+9i\right)\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-3+9i\right)\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)i^{2}}{5}
Multiply complex numbers -3+9i and 2-i like you multiply binomials.
\frac{-3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{-6+3i+18i+9}{5}
Do the multiplications in -3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)\left(-1\right).
\frac{-6+9+\left(3+18\right)i}{5}
Combine the real and imaginary parts in -6+3i+18i+9.
\frac{3+21i}{5}
Do the additions in -6+9+\left(3+18\right)i.
\frac{3}{5}+\frac{21}{5}i
Divide 3+21i by 5 to get \frac{3}{5}+\frac{21}{5}i.
Re(\frac{\left(-3+9i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{-3+9i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{\left(-3+9i\right)\left(2-i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-3+9i\right)\left(2-i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)i^{2}}{5})
Multiply complex numbers -3+9i and 2-i like you multiply binomials.
Re(\frac{-3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{-6+3i+18i+9}{5})
Do the multiplications in -3\times 2-3\left(-i\right)+9i\times 2+9\left(-1\right)\left(-1\right).
Re(\frac{-6+9+\left(3+18\right)i}{5})
Combine the real and imaginary parts in -6+3i+18i+9.
Re(\frac{3+21i}{5})
Do the additions in -6+9+\left(3+18\right)i.
Re(\frac{3}{5}+\frac{21}{5}i)
Divide 3+21i by 5 to get \frac{3}{5}+\frac{21}{5}i.
\frac{3}{5}
The real part of \frac{3}{5}+\frac{21}{5}i is \frac{3}{5}.