Evaluate
\frac{108+139k^{2}-347k^{4}-108k^{6}}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}
Expand
-\frac{108k^{6}+347k^{4}-139k^{2}-108}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}
Share
Copied to clipboard
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{27\times \frac{1}{k^{3}}-8\times \frac{1}{k}}{2\left(9\times \frac{1}{k^{2}}+4\right)}
Use the distributive property to multiply 2 by 9k^{2}+4.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27}{k^{3}}-8\times \frac{1}{k}}{2\left(9\times \frac{1}{k^{2}}+4\right)}
Express 27\times \frac{1}{k^{3}} as a single fraction.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27}{k^{3}}-\frac{8}{k}}{2\left(9\times \frac{1}{k^{2}}+4\right)}
Express 8\times \frac{1}{k} as a single fraction.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27}{k^{3}}-\frac{8k^{2}}{k^{3}}}{2\left(9\times \frac{1}{k^{2}}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k^{3} and k is k^{3}. Multiply \frac{8}{k} times \frac{k^{2}}{k^{2}}.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27-8k^{2}}{k^{3}}}{2\left(9\times \frac{1}{k^{2}}+4\right)}
Since \frac{27}{k^{3}} and \frac{8k^{2}}{k^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27-8k^{2}}{k^{3}}}{2\left(\frac{9}{k^{2}}+4\right)}
Express 9\times \frac{1}{k^{2}} as a single fraction.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27-8k^{2}}{k^{3}}}{2\left(\frac{9}{k^{2}}+\frac{4k^{2}}{k^{2}}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{k^{2}}{k^{2}}.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27-8k^{2}}{k^{3}}}{2\times \frac{9+4k^{2}}{k^{2}}}
Since \frac{9}{k^{2}} and \frac{4k^{2}}{k^{2}} have the same denominator, add them by adding their numerators.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27-8k^{2}}{k^{3}}}{\frac{2\left(9+4k^{2}\right)}{k^{2}}}
Express 2\times \frac{9+4k^{2}}{k^{2}} as a single fraction.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\left(27-8k^{2}\right)k^{2}}{k^{3}\times 2\left(9+4k^{2}\right)}
Divide \frac{27-8k^{2}}{k^{3}} by \frac{2\left(9+4k^{2}\right)}{k^{2}} by multiplying \frac{27-8k^{2}}{k^{3}} by the reciprocal of \frac{2\left(9+4k^{2}\right)}{k^{2}}.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{-8k^{2}+27}{2k\left(4k^{2}+9\right)}
Cancel out k^{2} in both numerator and denominator.
\frac{-27k^{3}-8k}{2\left(9k^{2}+4\right)}+\frac{-8k^{2}+27}{2k\left(4k^{2}+9\right)}
Factor 18k^{2}+8.
\frac{\left(-27k^{3}-8k\right)k\left(4k^{2}+9\right)}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}+\frac{\left(-8k^{2}+27\right)\left(9k^{2}+4\right)}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(9k^{2}+4\right) and 2k\left(4k^{2}+9\right) is 2k\left(4k^{2}+9\right)\left(9k^{2}+4\right). Multiply \frac{-27k^{3}-8k}{2\left(9k^{2}+4\right)} times \frac{k\left(4k^{2}+9\right)}{k\left(4k^{2}+9\right)}. Multiply \frac{-8k^{2}+27}{2k\left(4k^{2}+9\right)} times \frac{9k^{2}+4}{9k^{2}+4}.
\frac{\left(-27k^{3}-8k\right)k\left(4k^{2}+9\right)+\left(-8k^{2}+27\right)\left(9k^{2}+4\right)}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}
Since \frac{\left(-27k^{3}-8k\right)k\left(4k^{2}+9\right)}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)} and \frac{\left(-8k^{2}+27\right)\left(9k^{2}+4\right)}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)} have the same denominator, add them by adding their numerators.
\frac{-108k^{6}-243k^{4}-32k^{4}-72k^{2}-72k^{4}-32k^{2}+243k^{2}+108}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}
Do the multiplications in \left(-27k^{3}-8k\right)k\left(4k^{2}+9\right)+\left(-8k^{2}+27\right)\left(9k^{2}+4\right).
\frac{-108k^{6}-347k^{4}+139k^{2}+108}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}
Combine like terms in -108k^{6}-243k^{4}-32k^{4}-72k^{2}-72k^{4}-32k^{2}+243k^{2}+108.
\frac{-108k^{6}-347k^{4}+139k^{2}+108}{72k^{5}+194k^{3}+72k}
Expand 2k\left(4k^{2}+9\right)\left(9k^{2}+4\right).
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{27\times \frac{1}{k^{3}}-8\times \frac{1}{k}}{2\left(9\times \frac{1}{k^{2}}+4\right)}
Use the distributive property to multiply 2 by 9k^{2}+4.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27}{k^{3}}-8\times \frac{1}{k}}{2\left(9\times \frac{1}{k^{2}}+4\right)}
Express 27\times \frac{1}{k^{3}} as a single fraction.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27}{k^{3}}-\frac{8}{k}}{2\left(9\times \frac{1}{k^{2}}+4\right)}
Express 8\times \frac{1}{k} as a single fraction.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27}{k^{3}}-\frac{8k^{2}}{k^{3}}}{2\left(9\times \frac{1}{k^{2}}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k^{3} and k is k^{3}. Multiply \frac{8}{k} times \frac{k^{2}}{k^{2}}.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27-8k^{2}}{k^{3}}}{2\left(9\times \frac{1}{k^{2}}+4\right)}
Since \frac{27}{k^{3}} and \frac{8k^{2}}{k^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27-8k^{2}}{k^{3}}}{2\left(\frac{9}{k^{2}}+4\right)}
Express 9\times \frac{1}{k^{2}} as a single fraction.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27-8k^{2}}{k^{3}}}{2\left(\frac{9}{k^{2}}+\frac{4k^{2}}{k^{2}}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{k^{2}}{k^{2}}.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27-8k^{2}}{k^{3}}}{2\times \frac{9+4k^{2}}{k^{2}}}
Since \frac{9}{k^{2}} and \frac{4k^{2}}{k^{2}} have the same denominator, add them by adding their numerators.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\frac{27-8k^{2}}{k^{3}}}{\frac{2\left(9+4k^{2}\right)}{k^{2}}}
Express 2\times \frac{9+4k^{2}}{k^{2}} as a single fraction.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{\left(27-8k^{2}\right)k^{2}}{k^{3}\times 2\left(9+4k^{2}\right)}
Divide \frac{27-8k^{2}}{k^{3}} by \frac{2\left(9+4k^{2}\right)}{k^{2}} by multiplying \frac{27-8k^{2}}{k^{3}} by the reciprocal of \frac{2\left(9+4k^{2}\right)}{k^{2}}.
\frac{-27k^{3}-8k}{18k^{2}+8}+\frac{-8k^{2}+27}{2k\left(4k^{2}+9\right)}
Cancel out k^{2} in both numerator and denominator.
\frac{-27k^{3}-8k}{2\left(9k^{2}+4\right)}+\frac{-8k^{2}+27}{2k\left(4k^{2}+9\right)}
Factor 18k^{2}+8.
\frac{\left(-27k^{3}-8k\right)k\left(4k^{2}+9\right)}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}+\frac{\left(-8k^{2}+27\right)\left(9k^{2}+4\right)}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(9k^{2}+4\right) and 2k\left(4k^{2}+9\right) is 2k\left(4k^{2}+9\right)\left(9k^{2}+4\right). Multiply \frac{-27k^{3}-8k}{2\left(9k^{2}+4\right)} times \frac{k\left(4k^{2}+9\right)}{k\left(4k^{2}+9\right)}. Multiply \frac{-8k^{2}+27}{2k\left(4k^{2}+9\right)} times \frac{9k^{2}+4}{9k^{2}+4}.
\frac{\left(-27k^{3}-8k\right)k\left(4k^{2}+9\right)+\left(-8k^{2}+27\right)\left(9k^{2}+4\right)}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}
Since \frac{\left(-27k^{3}-8k\right)k\left(4k^{2}+9\right)}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)} and \frac{\left(-8k^{2}+27\right)\left(9k^{2}+4\right)}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)} have the same denominator, add them by adding their numerators.
\frac{-108k^{6}-243k^{4}-32k^{4}-72k^{2}-72k^{4}-32k^{2}+243k^{2}+108}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}
Do the multiplications in \left(-27k^{3}-8k\right)k\left(4k^{2}+9\right)+\left(-8k^{2}+27\right)\left(9k^{2}+4\right).
\frac{-108k^{6}-347k^{4}+139k^{2}+108}{2k\left(4k^{2}+9\right)\left(9k^{2}+4\right)}
Combine like terms in -108k^{6}-243k^{4}-32k^{4}-72k^{2}-72k^{4}-32k^{2}+243k^{2}+108.
\frac{-108k^{6}-347k^{4}+139k^{2}+108}{72k^{5}+194k^{3}+72k}
Expand 2k\left(4k^{2}+9\right)\left(9k^{2}+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}