Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-20}{\left(x+4\right)\left(x+6\right)}+\frac{x+16}{\left(x+5\right)\left(x+6\right)}
Factor x^{2}+10x+24. Factor x^{2}+11x+30.
\frac{-20\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}+\frac{\left(x+16\right)\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+4\right)\left(x+6\right) and \left(x+5\right)\left(x+6\right) is \left(x+4\right)\left(x+5\right)\left(x+6\right). Multiply \frac{-20}{\left(x+4\right)\left(x+6\right)} times \frac{x+5}{x+5}. Multiply \frac{x+16}{\left(x+5\right)\left(x+6\right)} times \frac{x+4}{x+4}.
\frac{-20\left(x+5\right)+\left(x+16\right)\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}
Since \frac{-20\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)} and \frac{\left(x+16\right)\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{-20x-100+x^{2}+4x+16x+64}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}
Do the multiplications in -20\left(x+5\right)+\left(x+16\right)\left(x+4\right).
\frac{-36+x^{2}}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}
Combine like terms in -20x-100+x^{2}+4x+16x+64.
\frac{\left(x-6\right)\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}
Factor the expressions that are not already factored in \frac{-36+x^{2}}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}.
\frac{x-6}{\left(x+4\right)\left(x+5\right)}
Cancel out x+6 in both numerator and denominator.
\frac{x-6}{x^{2}+9x+20}
Expand \left(x+4\right)\left(x+5\right).
\frac{-20}{\left(x+4\right)\left(x+6\right)}+\frac{x+16}{\left(x+5\right)\left(x+6\right)}
Factor x^{2}+10x+24. Factor x^{2}+11x+30.
\frac{-20\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}+\frac{\left(x+16\right)\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+4\right)\left(x+6\right) and \left(x+5\right)\left(x+6\right) is \left(x+4\right)\left(x+5\right)\left(x+6\right). Multiply \frac{-20}{\left(x+4\right)\left(x+6\right)} times \frac{x+5}{x+5}. Multiply \frac{x+16}{\left(x+5\right)\left(x+6\right)} times \frac{x+4}{x+4}.
\frac{-20\left(x+5\right)+\left(x+16\right)\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}
Since \frac{-20\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)} and \frac{\left(x+16\right)\left(x+4\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{-20x-100+x^{2}+4x+16x+64}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}
Do the multiplications in -20\left(x+5\right)+\left(x+16\right)\left(x+4\right).
\frac{-36+x^{2}}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}
Combine like terms in -20x-100+x^{2}+4x+16x+64.
\frac{\left(x-6\right)\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}
Factor the expressions that are not already factored in \frac{-36+x^{2}}{\left(x+4\right)\left(x+5\right)\left(x+6\right)}.
\frac{x-6}{\left(x+4\right)\left(x+5\right)}
Cancel out x+6 in both numerator and denominator.
\frac{x-6}{x^{2}+9x+20}
Expand \left(x+4\right)\left(x+5\right).