Evaluate
-\frac{y^{2}x^{3}}{2}
Differentiate w.r.t. x
-\frac{3\left(xy\right)^{2}}{2}
Share
Copied to clipboard
\frac{-2x^{5}yz^{3}\times 9yz^{4}}{\left(-6x\right)^{2}y^{0}z^{7}}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{-2x^{5}y^{2}z^{3}\times 9z^{4}}{\left(-6x\right)^{2}y^{0}z^{7}}
Multiply y and y to get y^{2}.
\frac{-2x^{5}y^{2}z^{7}\times 9}{\left(-6x\right)^{2}y^{0}z^{7}}
To multiply powers of the same base, add their exponents. Add 3 and 4 to get 7.
\frac{-2\times 9y^{2}x^{5}}{y^{0}\left(-6x\right)^{2}}
Cancel out z^{7} in both numerator and denominator.
\frac{-2\times 9y^{2}x^{5}}{\left(-6x\right)^{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-18y^{2}x^{5}}{\left(-6x\right)^{2}}
Multiply -2 and 9 to get -18.
\frac{-18y^{2}x^{5}}{\left(-6\right)^{2}x^{2}}
Expand \left(-6x\right)^{2}.
\frac{-18y^{2}x^{5}}{36x^{2}}
Calculate -6 to the power of 2 and get 36.
\frac{-y^{2}x^{3}}{2}
Cancel out 18x^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}