Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(-2\right)x^{2}+306=9\left(x+1\right)
Multiply both sides of the equation by 36, the least common multiple of 9,2,4.
-8x^{2}+306=9\left(x+1\right)
Multiply 4 and -2 to get -8.
-8x^{2}+306=9x+9
Use the distributive property to multiply 9 by x+1.
-8x^{2}+306-9x=9
Subtract 9x from both sides.
-8x^{2}+306-9x-9=0
Subtract 9 from both sides.
-8x^{2}+297-9x=0
Subtract 9 from 306 to get 297.
-8x^{2}-9x+297=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-8\right)\times 297}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, -9 for b, and 297 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-8\right)\times 297}}{2\left(-8\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+32\times 297}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-\left(-9\right)±\sqrt{81+9504}}{2\left(-8\right)}
Multiply 32 times 297.
x=\frac{-\left(-9\right)±\sqrt{9585}}{2\left(-8\right)}
Add 81 to 9504.
x=\frac{-\left(-9\right)±3\sqrt{1065}}{2\left(-8\right)}
Take the square root of 9585.
x=\frac{9±3\sqrt{1065}}{2\left(-8\right)}
The opposite of -9 is 9.
x=\frac{9±3\sqrt{1065}}{-16}
Multiply 2 times -8.
x=\frac{3\sqrt{1065}+9}{-16}
Now solve the equation x=\frac{9±3\sqrt{1065}}{-16} when ± is plus. Add 9 to 3\sqrt{1065}.
x=\frac{-3\sqrt{1065}-9}{16}
Divide 9+3\sqrt{1065} by -16.
x=\frac{9-3\sqrt{1065}}{-16}
Now solve the equation x=\frac{9±3\sqrt{1065}}{-16} when ± is minus. Subtract 3\sqrt{1065} from 9.
x=\frac{3\sqrt{1065}-9}{16}
Divide 9-3\sqrt{1065} by -16.
x=\frac{-3\sqrt{1065}-9}{16} x=\frac{3\sqrt{1065}-9}{16}
The equation is now solved.
4\left(-2\right)x^{2}+306=9\left(x+1\right)
Multiply both sides of the equation by 36, the least common multiple of 9,2,4.
-8x^{2}+306=9\left(x+1\right)
Multiply 4 and -2 to get -8.
-8x^{2}+306=9x+9
Use the distributive property to multiply 9 by x+1.
-8x^{2}+306-9x=9
Subtract 9x from both sides.
-8x^{2}-9x=9-306
Subtract 306 from both sides.
-8x^{2}-9x=-297
Subtract 306 from 9 to get -297.
\frac{-8x^{2}-9x}{-8}=-\frac{297}{-8}
Divide both sides by -8.
x^{2}+\left(-\frac{9}{-8}\right)x=-\frac{297}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}+\frac{9}{8}x=-\frac{297}{-8}
Divide -9 by -8.
x^{2}+\frac{9}{8}x=\frac{297}{8}
Divide -297 by -8.
x^{2}+\frac{9}{8}x+\left(\frac{9}{16}\right)^{2}=\frac{297}{8}+\left(\frac{9}{16}\right)^{2}
Divide \frac{9}{8}, the coefficient of the x term, by 2 to get \frac{9}{16}. Then add the square of \frac{9}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{8}x+\frac{81}{256}=\frac{297}{8}+\frac{81}{256}
Square \frac{9}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{8}x+\frac{81}{256}=\frac{9585}{256}
Add \frac{297}{8} to \frac{81}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{16}\right)^{2}=\frac{9585}{256}
Factor x^{2}+\frac{9}{8}x+\frac{81}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{16}\right)^{2}}=\sqrt{\frac{9585}{256}}
Take the square root of both sides of the equation.
x+\frac{9}{16}=\frac{3\sqrt{1065}}{16} x+\frac{9}{16}=-\frac{3\sqrt{1065}}{16}
Simplify.
x=\frac{3\sqrt{1065}-9}{16} x=\frac{-3\sqrt{1065}-9}{16}
Subtract \frac{9}{16} from both sides of the equation.