Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3}{\left(m-3\right)\left(m+3\right)}-\frac{m-3}{\left(m-3\right)\left(m+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-3 and m+3 is \left(m-3\right)\left(m+3\right). Multiply \frac{1}{m-3} times \frac{m+3}{m+3}. Multiply \frac{1}{m+3} times \frac{m-3}{m-3}.
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3-\left(m-3\right)}{\left(m-3\right)\left(m+3\right)}}
Since \frac{m+3}{\left(m-3\right)\left(m+3\right)} and \frac{m-3}{\left(m-3\right)\left(m+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3-m+3}{\left(m-3\right)\left(m+3\right)}}
Do the multiplications in m+3-\left(m-3\right).
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{6}{\left(m-3\right)\left(m+3\right)}}
Combine like terms in m+3-m+3.
\frac{-2m\left(m-3\right)\left(m+3\right)}{\left(m-3\right)^{2}\times 6}
Divide \frac{-2m}{\left(m-3\right)^{2}} by \frac{6}{\left(m-3\right)\left(m+3\right)} by multiplying \frac{-2m}{\left(m-3\right)^{2}} by the reciprocal of \frac{6}{\left(m-3\right)\left(m+3\right)}.
\frac{-m\left(m+3\right)}{3\left(m-3\right)}
Cancel out 2\left(m-3\right) in both numerator and denominator.
\frac{m\left(m+3\right)}{-3\left(m-3\right)}
Cancel out -1 in both numerator and denominator.
\frac{m^{2}+3m}{-3\left(m-3\right)}
Use the distributive property to multiply m by m+3.
\frac{m^{2}+3m}{-3m+9}
Use the distributive property to multiply -3 by m-3.
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3}{\left(m-3\right)\left(m+3\right)}-\frac{m-3}{\left(m-3\right)\left(m+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-3 and m+3 is \left(m-3\right)\left(m+3\right). Multiply \frac{1}{m-3} times \frac{m+3}{m+3}. Multiply \frac{1}{m+3} times \frac{m-3}{m-3}.
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3-\left(m-3\right)}{\left(m-3\right)\left(m+3\right)}}
Since \frac{m+3}{\left(m-3\right)\left(m+3\right)} and \frac{m-3}{\left(m-3\right)\left(m+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3-m+3}{\left(m-3\right)\left(m+3\right)}}
Do the multiplications in m+3-\left(m-3\right).
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{6}{\left(m-3\right)\left(m+3\right)}}
Combine like terms in m+3-m+3.
\frac{-2m\left(m-3\right)\left(m+3\right)}{\left(m-3\right)^{2}\times 6}
Divide \frac{-2m}{\left(m-3\right)^{2}} by \frac{6}{\left(m-3\right)\left(m+3\right)} by multiplying \frac{-2m}{\left(m-3\right)^{2}} by the reciprocal of \frac{6}{\left(m-3\right)\left(m+3\right)}.
\frac{-m\left(m+3\right)}{3\left(m-3\right)}
Cancel out 2\left(m-3\right) in both numerator and denominator.
\frac{m\left(m+3\right)}{-3\left(m-3\right)}
Cancel out -1 in both numerator and denominator.
\frac{m^{2}+3m}{-3\left(m-3\right)}
Use the distributive property to multiply m by m+3.
\frac{m^{2}+3m}{-3m+9}
Use the distributive property to multiply -3 by m-3.