Evaluate
-\frac{m\left(m+3\right)}{3\left(m-3\right)}
Expand
-\frac{m^{2}+3m}{3\left(m-3\right)}
Share
Copied to clipboard
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3}{\left(m-3\right)\left(m+3\right)}-\frac{m-3}{\left(m-3\right)\left(m+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-3 and m+3 is \left(m-3\right)\left(m+3\right). Multiply \frac{1}{m-3} times \frac{m+3}{m+3}. Multiply \frac{1}{m+3} times \frac{m-3}{m-3}.
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3-\left(m-3\right)}{\left(m-3\right)\left(m+3\right)}}
Since \frac{m+3}{\left(m-3\right)\left(m+3\right)} and \frac{m-3}{\left(m-3\right)\left(m+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3-m+3}{\left(m-3\right)\left(m+3\right)}}
Do the multiplications in m+3-\left(m-3\right).
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{6}{\left(m-3\right)\left(m+3\right)}}
Combine like terms in m+3-m+3.
\frac{-2m\left(m-3\right)\left(m+3\right)}{\left(m-3\right)^{2}\times 6}
Divide \frac{-2m}{\left(m-3\right)^{2}} by \frac{6}{\left(m-3\right)\left(m+3\right)} by multiplying \frac{-2m}{\left(m-3\right)^{2}} by the reciprocal of \frac{6}{\left(m-3\right)\left(m+3\right)}.
\frac{-m\left(m+3\right)}{3\left(m-3\right)}
Cancel out 2\left(m-3\right) in both numerator and denominator.
\frac{m\left(m+3\right)}{-3\left(m-3\right)}
Cancel out -1 in both numerator and denominator.
\frac{m^{2}+3m}{-3\left(m-3\right)}
Use the distributive property to multiply m by m+3.
\frac{m^{2}+3m}{-3m+9}
Use the distributive property to multiply -3 by m-3.
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3}{\left(m-3\right)\left(m+3\right)}-\frac{m-3}{\left(m-3\right)\left(m+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-3 and m+3 is \left(m-3\right)\left(m+3\right). Multiply \frac{1}{m-3} times \frac{m+3}{m+3}. Multiply \frac{1}{m+3} times \frac{m-3}{m-3}.
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3-\left(m-3\right)}{\left(m-3\right)\left(m+3\right)}}
Since \frac{m+3}{\left(m-3\right)\left(m+3\right)} and \frac{m-3}{\left(m-3\right)\left(m+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{m+3-m+3}{\left(m-3\right)\left(m+3\right)}}
Do the multiplications in m+3-\left(m-3\right).
\frac{\frac{-2m}{\left(m-3\right)^{2}}}{\frac{6}{\left(m-3\right)\left(m+3\right)}}
Combine like terms in m+3-m+3.
\frac{-2m\left(m-3\right)\left(m+3\right)}{\left(m-3\right)^{2}\times 6}
Divide \frac{-2m}{\left(m-3\right)^{2}} by \frac{6}{\left(m-3\right)\left(m+3\right)} by multiplying \frac{-2m}{\left(m-3\right)^{2}} by the reciprocal of \frac{6}{\left(m-3\right)\left(m+3\right)}.
\frac{-m\left(m+3\right)}{3\left(m-3\right)}
Cancel out 2\left(m-3\right) in both numerator and denominator.
\frac{m\left(m+3\right)}{-3\left(m-3\right)}
Cancel out -1 in both numerator and denominator.
\frac{m^{2}+3m}{-3\left(m-3\right)}
Use the distributive property to multiply m by m+3.
\frac{m^{2}+3m}{-3m+9}
Use the distributive property to multiply -3 by m-3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}